Abstract topology analysis of the join phase of the merge protocol with \textit{astra}

Peter Backes1 Jan Reineke2

1Department of Computer Science
Saarland University
2Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

TTC Workshop, July 2010
Star abstraction

- idea: consider only the “role” of a node, consisting of
 - its label (process state)
 - labels of its partner nodes
 - and the connections between the node and its partner nodes.

Notions: Star, core node, axis, outer nodes
Example of abstraction (α)

- Concrete graph
- Split into concrete stars
- Abstract them into abstract stars
- Remove duplicates
Property evaluation

- No two nodes labelled *flw* are connected to each other with an edge labelled *ldr*.

- A node labelled *pass* or *ld* always has at least one node labelled *flw* connected via some edge labelled *flws*.
Results

- **tool:** astra

- completeness of system: only “join” phase — in contrast to existing abstraction based tools (hiralysys), astra has no problems with the arising topologies (drawbacks: fails to analyze merge phase (work in progress))

- completeness of analysis: arbitrarily many processes

- performance: < 1 MB memory, < 1 sec processor time on any reasonably modern machine.

- output flexibility: graphviz, GDL, XGDL, Tulip and METAPOST, no filtering

- power of property evaluation: subgraph matching with negative application conditions
Thanks
Acknowledgements

This work was supported by the DFG as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS. In addition, it was supported in part by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley, which receives support from the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs)), the U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research (MURI #FA9550-06-0312 and AF-TRUST #FA9550-06-1-0244), the Air Force Research Lab (AFRL), the Multiscale Systems Center (MuSyC) and the following companies: Bosch, National Instruments, Thales, and Toyota.