Cache Related Preemption Delay for Set-Associative Caches
Resilience Analysis

Sebastian Altmeyer, Claire Burguière, Jan Reineke

AVACS Workshop, Oldenburg 2009
Why use preemptive scheduling?

- Preemption often increases schedulability of task sets.
- Tasks with short deadlines are often unschedulable non-preemptively.

Example

Given: Two periodic tasks T_1 and T_2, with periods $P_1 = 2$, $P_2 = 8$, deadlines $D_1 = P_1$, $D_2 = P_2$, and execution times $C_1 = 1$, $C_2 = 3$.
Why use preemptive scheduling?

- Preemption often increases schedulability of task sets.
- Tasks with short deadlines are often unschedulable non-preemptively.

Example

Given: Two periodic tasks T_1 and T_2, with periods $P_1 = 2$, $P_2 = 8$, deadlines $D_1 = P_1$, $D_2 = P_2$, and execution times $C_1 = 1$, $C_2 = 3$.
Preemption does not come for free!

- The preemption task "disturbs" the state of performance-enhancing features like caches and pipelines.
- Once the preempted task resumes its execution, the disturbance may cause additional cache misses.
- The additional execution time due to additional cache misses is known as the cache-related preemption delay (CRPD).

\[T_2 \uparrow \quad T_1 \quad \text{CRPD} \]

\[\uparrow \quad \text{Task Activation} \]
How to take preemption cost into account?

Where to account for preemption cost?

- Integrate into WCET Analysis: [?]
 - assume cache misses everywhere
 - very pessimistic but easy to use in schedulability analysis

- WCET Analysis + CRPD Analysis: [?]
 - $WCET_{bound} + n \cdot CRPD_{bound} \geq$ execution time of task with up to n preemptions
 - more precise but not supported by many schedulability analyses
CRPD for set-associative caches - LRU

■ CRPD computation:
 ▶ Preempted task: Useful Cache Blocks (UCB)
 ▶ Preempting task: Evicting Cache Blocks (ECB)

■ CRPD from UCB and ECB:
 ▶ Previous combination rather imprecise
 ⇒ Some UCBs remain useful under preemption
Useful Cache Block - [?]

Definition (Useful Cache Block)

A memory block \(m \) at program point \(P \) is called a useful cache block, if

a) \(m \) may be cached at \(P \)

b) \(m \) may be reused at program point \(P' \) that may be reached from \(P \) with no eviction of \(m \) on this path.
Useful Cache Block - [?]

Definition (Useful Cache Block)

A memory block \(m \) at program point \(P \) is called a useful cache block, if

a) \(m \) may be cached at \(P \)

b) \(m \) may be reused at program point \(P' \) that may be reached from \(P \) with no eviction of \(m \) on this path.

\(\times = \text{hit} \)
\(\bigcirc = \text{miss} \)

Cache Content: \([A, B, C, D]\)
Useful Cache Block - [?]

Definition (Useful Cache Block)

A memory block \(m \) at program point \(P \) is called a useful cache block, if

a) \(m \) may be cached at \(P \)

b) \(m \) may be reused at program point \(P' \) that may be reached from \(P \) with no eviction of \(m \) on this path.

\[\begin{align*}
\times & = \text{hit} \\
\circ & = \text{miss}
\end{align*} \]

\[\text{Cache Content: } [A, B, C, D] \]

\[\begin{align*}
\text{CRPD}_{\text{UCB}} & = \sum_{s=1}^{c} \text{CRPD}_{\text{UCB}}^s \\
\text{CRPD}_{\text{UCB}}^s & = \text{BRT} \times \min(\| \text{UCB}(s) \|, n)
\end{align*} \]

\(n = \text{associativity} \)

\(\text{BRT} = \text{Block Reload Time} \)
Evicting Cache Blocks

Definition (Evicting Cache Blocks (ECB))

A memory block of the preemtping task is called an evicting cache block, if it may be accessed during the execution of the preemtping task.

Cache Content: \([A, B, C, D]\)

Cache Content: \([X, Y, Z, D]\)

\(\circ\) = additional miss due to preemption (CRPD)
Evicting Cache Blocks

Definition (Evicting Cache Blocks (ECB))

A memory block of the preempting task is called an evicting cache block, if it may be accessed during the execution of the preempting task.

$\text{CRPD}_{\text{ECB}}^s = \begin{cases} 0 & \text{if } \text{ECB}(s) = \emptyset \\ \text{BRT} \times n & \text{otherwise} \end{cases}$
Impact of the preemtting task on the preempted task

CRPD (using UCB and ECB)

\[CRPD_{UCB\&ECB} = \sum_{s=1}^{c} \min(CRPD_{UCB}^s, CRPD_{ECB}^s) \]
Impact of the preemtting task on the preempted task: Example

\[
\begin{align*}
[c, b, a, x] & \xrightarrow{a} [a, c, b, x] & b & [b, a, c, x] & c & [c, b, a, x] & \text{no misses}
\end{align*}
\]
Impact of the preemtting task on the preempted task: Example

\[
\begin{align*}
\text{ECBs} &= \{e\} \\
[c, b, a, x] &\xrightarrow{a} [a, c, b, x] \xrightarrow{b} [b, a, c, x] \xrightarrow{c} [c, b, a, x] \quad \text{no misses} \\
[e, c, b, a] &\xrightarrow{a} [a, e, c, b] \xrightarrow{b} [b, a, e, c] \xrightarrow{c} [c, b, a, e] \quad \text{no misses}
\end{align*}
\]

- \(\text{CRPD}_{\text{UCB}} \Rightarrow |\text{UCB}| = 3 \)
- \(\text{CRPD}_{\text{ECB}} \Rightarrow n = 4 \)
- \(\text{CRPD}_{\text{UCB}\&\text{ECB}} = \min(\text{CRPD}_{\text{UCB}}, \text{CRPD}_{\text{ECB}}) \Rightarrow 3 \)
 - Overestimation: number of additional misses = 0 < 3
Impact of the preempting task on the preempted task: Example

ECBs = \{e\}

\[[c, b, a, x] \xrightarrow{a} [a, c, b, x] \xrightarrow{b} [b, a, c, x] \xrightarrow{c} [c, b, a, x] \text{ no misses} \]

\[[e, c, b, a] \xrightarrow{a} [a, e, c, b] \xrightarrow{b} [b, a, e, c] \xrightarrow{c} [c, b, a, e] \text{ no misses} \]

- \(\text{CRPD}_{\text{UCB}} \Rightarrow |\text{UCB}| = 3 \)
- \(\text{CRPD}_{\text{ECB}} \Rightarrow n = 4 \)
- \(\text{CRPD}_{\text{UCB}} \& \text{ECB} = \min(\text{CRPD}_{\text{UCB}}, \text{CRPD}_{\text{ECB}}) \Rightarrow 3 \)
 - Overestimation: number of additional misses = 0 < 3

- Why?
 - \(|\text{ECB}| = 2\), but
 - \(|\text{ECB}| = 1\)
 - A single ECB is not sufficient to evict a UCB.
Combining UCB and ECB: Refinement

Determining \(\max |ECB| \), such that no additional cache miss occur
Combining UCB and ECB: Refinement

Determining $\max |\text{ECB}|$, such that no additional cache miss occur

$m \in \text{UCB}$

m is 4-resilient
Definition (l-Resilience)

A memory block \(m \) is called \(l \)-resilient at program point \(P \), if all possible next accesses to \(m \)

- that would be hits without preemption,
- would still be hits in case of a preemption at \(P \) with \(l \) accesses.
Resilience analysis

Definition (l-Resilience)

A memory block \(m \) is called \(l \)-resilient at program point \(P \), if all possible next accesses to \(m \)

- *that would be hits without preemption*,
- *would still be hits in case of a preemption at \(P \) with \(l \) accesses.*

- No UCB is \(n \)-resilient, i.e., no UCB remains useful after a preemption with \(n \) ECBs.
- Each \((l + 1) \)-resilient UCB is also \(l \)-resilient.
- Each UCB is at least \(0 \)-resilient.
Resilience analysis

Definition (l-Resilience)

A memory block \(m \) is called \(l \)-resilient at program point \(P \), if all possible next accesses to \(m \) that would be hits without preemption, would still be hits in case of a preemption at \(P \) with \(l \) accesses.

\[m \in UCB \]

\(m \) is 4-resilient

\[ECB = \{e_1, e_2, e_3, e_4\} \]
Resilience analysis

Definition (l-Resilience)

A memory block \(m \) is called \(l \)-resilient at program point \(P \), if all possible next accesses to \(m \)

- that would be hits without preemption,
- would still be hits in case of a preemption at \(P \) with \(l \) accesses.

\[m \in UCB \]
\[m \text{ is } 4\text{-resilient} \]

\[ECB = \{ e_1, e_2, e_3, e_4 \} \]

In general: if \(|ECB| \leq l \) then the UCB is not evicted
Resilience analysis

Definition (l-Resilience)

A memory block m is called l-resilient at program point P, if all possible next accesses to m
- that would be hits without preemption,
- would still be hits in case of a preemption at P with l accesses.

0-resil. 2-resil. m
0-resilient. 2-resil. m

no access to m m is not useful

no access to m m

m m m
Bounding the CRPD using Resilience

CRPD (Combining UCB and ECB by using Resilience)

\[
\text{blocks contributing to CRPD} = \underbrace{\text{UCB} \setminus \{m \mid m \text{ is ECB-resilient}\}}_{\text{useful}} \cup \underbrace{\{m \mid m \text{ is ECB-resilient}\}}_{\text{remain useful}}
\]
Bounding the CRPD using Resilience

CRPD (Combining UCB and ECB by using Resilience)

\[CRPD \leq BRT \times \left| \frac{UCB}{useful} \setminus \{ m \mid m \text{ is } ECB{-}\text{-resilient} \} \right| \]

blocks contributing to CRPD

remain useful
Bounding the CRPD using Resilience: Example

ECBs = \{ e \}

\[
\begin{align*}
[c, b, a, x] & \xrightarrow{a} [a, c, b, x] \xrightarrow{b} [b, a, c, x] \xrightarrow{c} [c, b, a, x] & \text{no misses} \\
[e, c, b, a] & \xrightarrow{a} [a, e, c, b] \xrightarrow{b} [b, a, e, c] \xrightarrow{c} [c, b, a, e] & \text{no misses}
\end{align*}
\]
Bounding the CRPD using Resilience: Example

- $|\text{ECB}| = 1$
- a, b and c are 1-resilient
- $CRPD_{\text{UCB}\&\text{ECB}}^{\text{res}} = BRT \times |UCB \setminus \{m \mid m \text{ is } |\text{ECB}|\text{-resilient}\}| = 0$
Bounding the CRPD using Resilience: Example

- ECBs
 - \(\{ e \} \)

- No misses

\[
\begin{align*}
[c, b, a, x] & \xrightarrow{a} [a, c, b, x] & \xrightarrow{b} [b, a, c, x] & \xrightarrow{c} [c, b, a, x] & \text{no misses} \\
[e, c, b, a] & \xrightarrow{a} [a, e, c, b] & \xrightarrow{b} [b, a, e, c] & \xrightarrow{c} [c, b, a, e] & \text{no misses}
\end{align*}
\]

- |ECB| = 1
- \(a, b \) and \(c \) are 1-resilient
- \(CRPD_{U CB \& E CB}^{res} = BRT \times |U CB \setminus \{ m \mid m \text{ is } |ECB|-\text{resilient} \}| = 0 \)

- Instead of: \(CRPD_{U CB \& E CB} = min(CRPD_{U CB}, CRPD_{E CB}) = 3 \times BRT \)
Bounding the CRPD using Resilience: Example

- $|\text{ECB}| = 1$
- a, b and c are 1-resilient
- $CRPD_{\text{UCB,ECD}}^{\text{res}} = BRT \times |\text{UCB} \setminus \{m \mid m \text{ is } |\text{ECB}|\text{-resilient}\}| = 0$

Instead of: $CRPD_{\text{UCB,ECD}} = \min(CRPD_{\text{UCB}}, CRPD_{\text{ECD}}) = 3 \times BRT$
Conclusions

- Preemptive scheduling:
 - sometimes necessary
 - but not for free: CRPD

- UCB and ECB analyses:
 - pessimistic overapproximation of the CRPD

- Resilience analysis:
 - determining the set of UCBs that remain useful under preemption
 - increase precision
 - implemented as two simple data-flow analyses:
 - similar to UCB analysis for LRU
 - currently in the phase of evaluation
Further reading

A New Notion of Useful Cache Block to Improve the Bounds of Cache-Related Preemption Delay.

Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.
In RTSS’96 p. 264, IEEE Computer Society.

Accurate estimation of cache-related preemption delay.
In CODES+ISSS’03 ACM.

Caches in WCET Analysis.

Schneider, J. (2000).
Cache and pipeline sensitive fixed priority scheduling for preemptive real-time systems.

Scalable precision cache analysis for real-time software.
ACM TECS 6, 25.

Integrated intra- and inter-task cache analysis for preemptive multi-tasking real-time
/-resilience analysis

(a) 0-resilient

(b) m is not useful 2-resilient

2-resilient
CPRD using ECB: Pitfall

ECBs = \{e\}

\[[b, a, 9, 8] \xrightarrow{8} [8, b, a, 9] \xrightarrow{9} [9, 8, b, a] \xrightarrow{a} [a, 9, 8, b] \xrightarrow{b} [b, a, 9, 8] \]

0 misses

\[[e, b, a, 9] \xrightarrow{8^*} [8, e, b, a] \xrightarrow{9^*} [9, 8, e, b] \xrightarrow{a^*} [a, 9, 8, e] \xrightarrow{b^*} [b, a, 9, 8] \]

4 misses

- \(|UCB(s)| = 4\)
- \(|ECB(s)| = 1\)
- \(n = 4\)
- number of additional misses = 4
Upper-bound on the CRPD - direct-mapped caches

- using UCB [?]:
 \[
 \text{CRPD}_{\text{UCB}} = \text{BRT} \cdot |\{ s_i \mid \exists m \in \text{UCB} : m \mod c = s_i \}|
 \]

- using ECB [?]:
 \[
 \text{CRPD}_{\text{ECB}} = \text{BRT} \cdot |\{ s_i \mid \exists m \in \text{ECB} : m \mod c = s_i \}|
 \]

- using UCB and ECB [? , ?]:
 \[
 \text{CRPD}_{\text{UCB}\&\text{ECB}} = \text{BRT} \cdot |\{ s_i \mid \exists m \in \text{UCB} : m \mod c = s_i \\
 \quad \land \exists m' \in \text{ECB} : m' \mod c = s_i \}|
 \]
CRPD for FIFO: Pitfalls

ECBs

\[
\begin{align*}
[b, a] & \xrightarrow{a} [b, a] & \xrightarrow{e^*} [e, b] & \xrightarrow{b} [e, b] & \xrightarrow{c^*} [c, e] & \xrightarrow{e} [c, e] & \text{2 misses} \\
[x, b] & \xrightarrow{a^*} [a, x] & \xrightarrow{e^*} [e, a] & \xrightarrow{b^*} [b, e] & \xrightarrow{c^*} [c, b] & \xrightarrow{e^*} [e, c] & \text{5 misses}
\end{align*}
\]
CRPD for FIFO: Pitfalls

ECBs
= \{x\}

\[
\begin{align*}
[b, a] & \xrightarrow{a} [b, a] \xrightarrow{e^*} [e, b] \xrightarrow{b} [e, b] \xrightarrow{c^*} [c, e] \xrightarrow{e} [c, e] & 2 \text{ misses} \\
[x, b] & \xrightarrow{a^*} [a, x] \xrightarrow{e^*} [e, a] \xrightarrow{b^*} [b, e] \xrightarrow{c^*} [c, b] \xrightarrow{e^*} [e, c] & 5 \text{ misses}
\end{align*}
\]

\begin{itemize}
 \item |UCB(s)| = 2
 \item |ECB(s)| = 1
 \item n = 2
 \item But: number of additional misses = 3
\end{itemize}
CRPD for PLRU: Pitfalls

- |UCB(s)| = 4
- |ECB(s)| = 2
- n = 4
- But: number of additional misses = 5