Sound and Efficient WCET Analysis in the Presence of Timing Anomalies

Jan Reineke¹, Rathijit Sen²

¹Saarland University, Saarbrücken
²University of Wisconsin, Madison

Workshop on WCET Analysis, Dublin 2009
Timing Analysis Framework

- Determines bounds on execution times of basic blocks
- Based on an abstract model of the hardware
- Either sound or efficient due to timing anomalies
- Usually most expensive part of WCET analysis
Model of Micro-Architectural Analysis

Cycle semantics:

Basic Block
Instruction
Instruction
Instruction

\[
\begin{align*}
\text{max}(s, \iota_0, \ldots, \iota_n) &= \max\{t | s \rightarrow \iota_0, \ldots, \iota_n, s' \} \\
\text{max}(s_1, \iota_1, \iota_2) &= 5
\end{align*}
\]
Model of Micro-Architectural Analysis

Notation:
\[s \xrightarrow{t_{\iota_0\ldots\iota_n}} s' \]
\[\max(s, \iota_0 \ldots \iota_n) := \max\{ t \mid s \xrightarrow{t_{\iota_0\ldots\iota_n}} s' \} \]

Example:
\[s_1 \xrightarrow{2_{\iota_1}} s_2 \]
\[\max(s_1, \iota_1 \iota_2) = 5 \]
Model of Micro-Architectural Analysis

Notation:
\[s \xrightarrow{t_{i_0...i_n}} s' \]
\[\text{max}(s, i_0 \ldots i_n) := \max\{ t \mid s \xrightarrow{t_{i_0...i_n}} s' \} \]

Example:
\[s_1 \xrightarrow{2_{i_1}} s_2 \]
\[\text{max}(s_1, i_1 i_2) = 5 \]
Definition (Timing anomaly)

An instruction semantics has a \textit{timing anomaly} if there exists a sequence of instructions $\iota_0\iota_1 \ldots \iota_n$, and an abstract state s, such that

- there are states s_1, s_2, with $s \xrightarrow{\iota_0} s_1$ and $s \xrightarrow{\iota_0} s_2$, and $t_1 < t_2$, such that
- $t_1 + \max(s_1, \iota_1 \ldots \iota_n) > t_2 + \max(s_2, \iota_1 \ldots \iota_n)$.
Definition (Valid Δ)

A Δ function is valid, if for all pairs of states s_1, s_2 and for all instruction sequences $\iota_0 \ldots \iota_n$:

$$\Delta(s_1, s_2) \geq \max(s_1, \iota_0 \ldots \iota_n) - \max(s_2, \iota_0 \ldots \iota_n)$$

Discard s_1 if $\Delta(s_1, s_2) + t_1 \leq t_2$.

Discard s_2 if $\Delta(s_2, s_1) + t_2 \leq t_1$.

Jan Reineke, Rathijit Sen

Sound and Efficient WCET Analysis

WCET, Dublin 2009
Computing Δ Functions

System of difference constraints:

For empty sequence of instructions:

$$\Delta(s_1, s_2) \geq 0$$

Recursive constraints:

$$\Delta(s_1, s_2) \geq t'_1 - t'_2 + \Delta(s'_1, s'_2) \quad \text{if} \quad s_1 \xrightarrow{t'_1} s'_1 \land s_2 \xrightarrow{t'_2} s'_2 \quad \text{for some} \; \iota.$$

\rightarrow Can be solved by a shortest paths computation.
Domino Effects

Least $\Delta(s_1, s_2)$ not always finite:

Definition (Domino effect)

An instruction semantics has a *domino effect* if there are two states s_1, s_2, such that for each $\Delta \in \mathbb{N}$ there is a sequence of instructions $\iota_0 \ldots \iota_n$, such that

$$\max(s_1, \iota_0 \ldots \iota_n) - \max(s_2, \iota_0 \ldots \iota_n) \geq \Delta.$$

But: Ratio $\frac{\max(s_1, \iota_0 \ldots \iota_n)}{\max(s_2, \iota_0 \ldots \iota_n)}$ always bounded.
Case Study

- Computed Δ function for simple processor with:
 - 2 instruction types
 - 2 functional units
 - execution times between 2 and 6 cycles
 - a 4 instruction fetch buffer

- Results:
 - 555 states
 - 97340 constraints
 - Δ function ranges from 0 through 7
Conclusions & Future Work

- Sound and efficient WCET analysis in the presence of timing anomalies, by
 - locally excluding timing anomalies, using
 - precomputed Δ functions.

- Computed Δ functions for relatively simple architectures.

- Future work:
 - Compute Δ functions for real-world architectures.
 - Perform WCET analysis based on that basis.
 - Explore further trade-offs between efficiency and precision.