Generic
Software pipelining
at the Assembly Level

O
Q)

Q 0O 0| QD

Cc | b a

Markus Pister Daniel Kastner

pister@cs.uni-sb.de kaestner@absint.com

.
Absint a

Angewandte Informatik

a v
bla] @=

= Embedded Systems (ES)

ainioio

= Embedded Systems (ES) are widely used
= Many systems of daily use: handy, handheld, ...

= Safety critical systems: airbag control, flight control system,...

= Rapidly growing complexity of software in ES

AbsInt S‘é’s?é’i!erl

Angewandte Informatik Lab I

bEIEad)
c|ibilEan]

e Embedded Systems (2)

= Hard real time scenarios:

= Short response time
= Flight control systems, airbag control systems

= Low power consumption and weight
= Handy, handheld, ...

» Urgent need for fast program execution under
the constraint of very limited code size

Compiler
Absint Dgsigne I

Angewandte Informatik Lab N

f-‘ Code Generation for ES

= Program execution times mostly spent in loops

= Modern processors offer massive
iInstruction level parallelism (ILP)
= VLIW architecture: e.qg. Philips TriMedia TM1000
= EPIC architecture: e.g. Intel Itanium

AbsInt 822?52‘31

Angewandte Informatik Lab N

I =1

*

a |
b[a]
clbla

Code Generation for ES (2)

= Many existing compilers cannot generate satisfactory
code (cannot exploit ILP)

= High effort enhancing them to cope with advanced
LP

» Improving the guality of legacy compilers by
= Starting at the assembly level

= Building flexible postpass optimizers
- Can be quickly retargeted
- Improve generated code quality significantly

Compiler
AbSlI‘It Design I
Angewandte Informatik Lab N

N oo

¥
=1

oo
[+1]

= PROPAN-Overview

= Postpass-oriented Retargetable Optimizer and Analyzer

Input program
(assembly code)

TDL-specification of
the target machine

aiSee
Visualization

Optimized
assembly file

Compiler
AbSll‘lt Desig:l I

Angewandte Informatik Lab I

In this talk

= Software Pipelining as a post pass optimization

» Important technique to exploit ILP while trying to keep code size
low

= Static cyclic and global instruction scheduling method
= |dea: overlap the execution of consecutive iterations of a loop

DDG 4x unrolled loop Kernel
a a
bl a
¥ clb|a
b a
clb]|a clb
v C b
C C
Compiler

Absint Design I
Angewandte Informatik Lab N

= Computes new (shorter)
loop body

= Qverlapping loop iterations
= Exploits ILP

= Modulo Scheduling
= Initiation interval (I1)
= divides loop into Stages
= Schedule operations modulo I

= |terative Modulo Scheduling

Absint

Angewandte Informatik

Schedule |

f'ﬂ Software Pipelining

original loop

Scheduling(ll)

success failure

Modulo Increase

Design

Compiler I
Lab N

- TER=
f-l‘ Minimum Initiation Interval

= Resource based: M// .
= Determined by the resource requirements
= Approximation for optimal bin packing

= Data dependence based: ////,,),
= Delays imposed by cycles in DDG

= MII = Max (Mll,,;, Mil,,)

= Basis for Kernel (modulo) computation

res?

AbsInt BZE?Siierl

Angewandte Informatik Lab N

(g R l=aE)

a | 11

f-ﬂ Scheduling Phase

(=1

= Flat Schedule
= Maintain partial feasible schedule
= Algorithm:
= Pick next operation
= Compute slot window [EStart,LStart]

= Search feasible slot within [EStart,LStart]

= Conflict: unschedule some operations and force
current operation into partial schedule

= Kernel
= Schedule operations from the Flat Schedule modulo II

AbsInt BZE?Siierl

Angewandte Informatik Lab N

a L2
b|la]| I=t

f-ﬂ Prologue / Epilogue

= fills up® or ,drains down* the pipeline respectively

no|w

A
II=1| a
v = Prologue
c | b| a
d y
A
{ Kernel
A
Epilogue
v
Compiler
Absint Design I
Angewandte Informatik Lab I

.« Characteristics of the
Post pass approach

= Integration of the pipelined loop into the
surrounding control flow

» Modification of branch targets needed

= Reconstruction of the CFG is complex and difficult

= Resolving targets of computed branches/calls and switch
tables

1d32d(20) r4 — r34
igmpt rl r34

Compiler
Absint Dgsigne I

Angewandte Informatik Lab N

.« GCharacteristics of the
i Post pass approach (2)

= Register allocation is already done
= Assignment can be changed with Modulo Variable Expansion
= Liveliness properties must be checked before register
renaming

= Applicable for inline assembly and library code

= Data dependencies at the assembly level are more
general
= More generality leads to a more complex DDG
= One single array access - multiple assembler operations

Compiler
AbsIint pesion |
Angewandte Informatik Lab N

J=array[i];

Absint

Angewandte Informatik

. » Data dependences at the
assembly level

1d32d(8) r6 — r7

(.

iadd(1) r7 — r8

1d32d(20) r4 — rl10
1add r10 r8 — r9
<’|d?)2d ro - ril1i

Design

Compiler I
Lab N

N oo

aln|o|ow

¥
=1
*

oo

DDG at the assembly level

f41i2-30} opiin Benc 0347 opoain R 15 aasa) ontace [l 1oe 8.24) optiazo JOM 171¢ pe60) cpian BEITR 0141 aelDIT0] 1341 Dutic) op1 A0[RIt 3410) el DIZD MY 1474 Bx 701 opH_ 57 270 JIR31 8391 opse. 57370 [13908701 opraco1 [71 8«10 op02a0 Bt 0-01 opii1e B3 a0+ oputie I Z L 6 100 cpui]

550 0a72 1 o1 420 18303501 g 51330

i ool ot comas]

109 Bt) g 500

Compiler
AbSlllf Design I

Angewandte Informatik Lab N

a_ 2
c|[b[a] b=t
c|lblalf

TriMedia TM1000 - Overview

= Digital Signal Processor for Multimedia
Applications designed by Philips

= 100 MHz VLIW-CPU (32 Bit)

= 128 General Purpose Registers (32 Bit)
= 27 parallel functional units

Compiler
Absint Dgsigne

Angewandte Informatik Lab N I

! ¥
| 1=
[a [t

ainioio
0o

' TM1000 — VLIW-Core

SDRAM

\Instruction Cache\

Angewandte Informatik

Issue Slot 1 Issue Slot ﬂ \Issue Slot :ﬂ \Issue Slot 4 Issue Slot 5
AL AL ALY
" DMEM DMEM
1 FALU DSPMUL DSPMUL - FALU DMEMSPEC
BRANCH BRANCH - BRANCH
IFMUL IFMUL
- DSPALU FTOUGH DSPALU
Compiler
Abs I n t Design

Lab N

a | 2
bla] m=1
c b lalt

TriMedia TM1000 - Properties

= |nstruction set
= Register-based addressing modes
= Predicative execution: register-based
= |load/store architecture
= Special multimedia operations

= 5 |ssue Slots, 5 Write-Back Busses

= lrregular execution times for operations
» Write-Back Bus has to be modeled independently

Compiler
Absint Dgsigne I

Angewandte Informatik Lab N

(g R l=aE)

j=B
—p-

= Files from DSPSTONE- and Mibench-Benchmark

= Best performance gains for chain like DDG's (up to 3,1)

Performance increase for the execution of 100 iterations

60

50+

40+

Instructions 30

20
10
O basic | basi
asic asic . .
math | math | 21° lchain €M gfir | dims |9Mat dmat) . jmam
1 > unt 2 1x3 rix1 u2
B Original | 1100 | 800 | 1000 800 | 900 | 1200 1000 | 2500 | 4000 | 5400 | 1100
W Pipelined | 796 | 792 | 798 | 292 | 295 | 1200|1000 | 799 1985 2386 | 895

Absint

Angewandte Informatik

f-i Experimental Results

Design

Compiler I
Lab N

(g R l=aE)

j=B
—p-

f-i Experimental Results (2)

= Moderate code size increase (average: 1,42)

Code size increase

60 —~

50

40-

Instructions 30-

20

10

0,
basic | basic |bitcou . . dmat1|dmatri mamu
math1 math2 | nt chain |chain2| dfir | dims 3 1 FFT 5

m Original | 11 8 10 8 9 12 10 25 40 54 11
m Kernel 8 8 8 3 3 12 10 8 20 24 9
@ Owerall | 20 8 22 7 10 12 10 39 45 58 31

AbsInt 82?52“'

Angewandte Informatik Lab N

(g R l=aE)

a | 11

f-ﬂ Experimental Results (3)

(=1

= Computed MII mostly is already feasible (73%o)

Feasibility of the Ml

20
18
16

| basic | basic | bitcou . . dmat1 | dmatri mamu

math1 | math2 ot chain |chain2| dfir | dims 3 1 FFT 5
m Mll 6 8 5 1 1 12 8 5 12 19 5
mll 7 8 6 1 1 12 10 5 12 19 5

AbsInt BZE?Siierl

Angewandte Informatik Lab N

Future Work

= Nested loops:
= Process loops from innermost to outermost one
= Treat an inner loop as one instruction (“meta-instruction”)

= Parallelize Prologue and Epilogue code with
surrounding code
= Can be done by existing acyclic scheduling technigues like
list scheduling

= Delay Slot filling

AbsInt 822?52”'

Angewandte Informatik Lab N

Conclusion

Embedded Systems creates need for fast program execution
under constraint of very limited code size

Overcome limitation of existing compilers by retargetable
postpass optimizer
Fast program execution by exploiting ILP with Software
Pipelining

Iterative Modulo Scheduling at the Assembly level

= Characteristics of the Postpass approach

Experimental results show
= a speedup of up to 3,1 with
= an average code size increase of 1,42

AbsInt Do

Angewandte Informatik Lab N

