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= Embedded Systems (ES)
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= Embedded Systems (ES) are widely used
= Many systems of daily use: handy, handheld, ...

= Safety critical systems: airbag control, flight control system,...

= Rapidly growing complexity of software in ES
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e Embedded Systems (2)

= Hard real time scenarios:

= Short response time
= Flight control systems, airbag control systems

= Low power consumption and weight
= Handy, handheld, ...

» Urgent need for fast program execution under
the constraint of very limited code size
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f-‘ Code Generation for ES

= Program execution times mostly spent in loops

= Modern processors offer massive
iInstruction level parallelism (ILP)
= VLIW architecture: e.qg. Philips TriMedia TM1000
= EPIC architecture: e.g. Intel Itanium
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Code Generation for ES (2)

= Many existing compilers cannot generate satisfactory
code (cannot exploit ILP)

= High effort enhancing them to cope with advanced
LP

» Improving the guality of legacy compilers by
= Starting at the assembly level

= Building flexible postpass optimizers
- Can be quickly retargeted
- Improve generated code quality significantly
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= PROPAN-Overview

= Postpass-oriented Retargetable Optimizer and Analyzer

Input program
(assembly code)

TDL-specification of
the target machine

aiSee
Visualization

Optimized
assembly file
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In this talk

= Software Pipelining as a post pass optimization

» Important technique to exploit ILP while trying to keep code size
low

= Static cyclic and global instruction scheduling method
= |dea: overlap the execution of consecutive iterations of a loop

DDG 4x unrolled loop Kernel
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= Computes new (shorter)
loop body

= Qverlapping loop iterations
= Exploits ILP

= Modulo Scheduling
= Initiation interval (I1)
= divides loop into Stages
= Schedule operations modulo I

= |terative Modulo Scheduling
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f'ﬂ Software Pipelining

original loop

Scheduling(ll)

success failure

Modulo Increase
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f-l‘ Minimum Initiation Interval

= Resource based: M// .
= Determined by the resource requirements
= Approximation for optimal bin packing

= Data dependence based: ////,,),
= Delays imposed by cycles in DDG

= MII = Max (Mll,,;, Mil,,)

= Basis for Kernel (modulo) computation
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f-ﬂ Scheduling Phase
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= Flat Schedule
= Maintain partial feasible schedule
= Algorithm:
= Pick next operation
= Compute slot window [EStart,LStart]

= Search feasible slot within [EStart,LStart]

= Conflict: unschedule some operations and force
current operation into partial schedule

= Kernel
= Schedule operations from the Flat Schedule modulo II
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f-ﬂ Prologue / Epilogue

= fills up® or ,drains down* the pipeline respectively
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.« Characteristics of the
Post pass approach

= Integration of the pipelined loop into the
surrounding control flow

» Modification of branch targets needed

= Reconstruction of the CFG is complex and difficult

= Resolving targets of computed branches/calls and switch
tables

1d32d(20) r4 — r34
igmpt rl r34
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.« GCharacteristics of the
i Post pass approach (2)

= Register allocation is already done
= Assignment can be changed with Modulo Variable Expansion
= Liveliness properties must be checked before register
renaming

= Applicable for inline assembly and library code

= Data dependencies at the assembly level are more
general
= More generality leads to a more complex DDG
= One single array access - multiple assembler operations
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J=array[i];

Absint

Angewandte Informatik

. » Data dependences at the
assembly level

1d32d(8) r6 — r7
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iadd(1) r7 — r8

1d32d(20) r4 — rl10
1add r10 r8 — r9
<’|d?)2d ro - ril1i
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DDG at the assembly level
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TriMedia TM1000 - Overview

= Digital Signal Processor for Multimedia
Applications designed by Philips

= 100 MHz VLIW-CPU (32 Bit)

= 128 General Purpose Registers (32 Bit)
= 27 parallel functional units

Compiler
Absint Dgsigne

Angewandte Informatik Lab N I



! ¥
| 1=
[a [t

ainioio
0o

' TM1000 — VLIW-Core

SDRAM

\Instruction Cache\
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Issue Slot 1 Issue Slot ﬂ \Issue Slot :ﬂ \Issue Slot 4 Issue Slot 5
AL AL ALY
" DMEM DMEM
1 FALU DSPMUL DSPMUL - FALU DMEMSPEC
BRANCH BRANCH - BRANCH
IFMUL IFMUL
- DSPALU FTOUGH DSPALU
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TriMedia TM1000 - Properties

= |nstruction set
= Register-based addressing modes
= Predicative execution: register-based
= |load/store architecture
= Special multimedia operations

= 5 |ssue Slots, 5 Write-Back Busses

= lrregular execution times for operations
» Write-Back Bus has to be modeled independently
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= Files from DSPSTONE- and Mibench-Benchmark

= Best performance gains for chain like DDG's (up to 3,1)

Performance increase for the execution of 100 iterations

60
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40+

Instructions 30

20
10
O basic | basi
asic asic . .
math | math | 21° lchain €M gfir | dims |9Mat dmat) . jmam
1 > unt 2 1x3 rix1 u2
B Original | 1100 | 800 | 1000 800 | 900 | 1200 1000 | 2500 | 4000 | 5400 | 1100
W Pipelined | 796 | 792 | 798 | 292 | 295 | 1200|1000 | 799 1985 2386 | 895
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f-i Experimental Results (2)

= Moderate code size increase (average: 1,42)

Code size increase

60 —~

50

40-

Instructions 30-

20

10

0,
basic | basic |bitcou . . dmat1|dmatri mamu
math1 math2 | nt chain |chain2| dfir | dims 3 1 FFT 5

m Original | 11 8 10 8 9 12 10 25 40 54 11
m Kernel 8 8 8 3 3 12 10 8 20 24 9
@ Owerall | 20 8 22 7 10 12 10 39 45 58 31
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f-ﬂ Experimental Results (3)
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= Computed MII mostly is already feasible (73%o)

Feasibility of the Ml

20
18
16

| basic | basic | bitcou . . dmat1 | dmatri mamu

math1 | math2 ot chain |chain2| dfir | dims 3 1 FFT 5
m Mll 6 8 5 1 1 12 8 5 12 19 5
mll 7 8 6 1 1 12 10 5 12 19 5
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Future Work

= Nested loops:
= Process loops from innermost to outermost one
= Treat an inner loop as one instruction (“meta-instruction”)

= Parallelize Prologue and Epilogue code with
surrounding code
= Can be done by existing acyclic scheduling technigues like
list scheduling

= Delay Slot filling
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Conclusion

Embedded Systems creates need for fast program execution
under constraint of very limited code size

Overcome limitation of existing compilers by retargetable
postpass optimizer
Fast program execution by exploiting ILP with Software
Pipelining

Iterative Modulo Scheduling at the Assembly level

= Characteristics of the Postpass approach

Experimental results show
= a speedup of up to 3,1 with
= an average code size increase of 1,42
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