
CGIS, a new Language for Data-Parallel GPU Programming

Nicolas Fritz
�

, Philipp Lucas
�

, Philipp Slusallek

Universität des Saarlandes, Germany
[cage|phlucas|slusallek]@cs.uni-sb.de

Abstract

In the last few years, GPUs have become new,
promising targets for general purpose program-
ming. Their inherent parallel architecture makes
them particularly suited for scientific numerical
computations with high arithmetical density.

There have been several proposals to exploit the
computational power of GPUs for data-parallel al-
gorithms. These approaches vary greatly in the ab-
straction level of the graphics processing unit ex-
posed to the programmer.

Despite the emergence of GPU programming
languages, there is still need for a single high-level
programming language that naturally lends itself to
compilation into efficient code, yet does not over-
burden the programmer with peculiarities of GPUs.

We present a novel unifying approach to facili-
tate the use of GPUs for data-parallel computation.
We describe the language CGIS and the associated
infrastructure that allows scientific programmers to
express data-parallel computations efficiently on an
appropriate level of abstraction.

CR Descriptors: ACM Subject Classification: C.1.4:
Processor Architectures—Parallel Architectures; D.3.0:
Programming Languages—General; I.3.1: Computer
Graphics—Hardware Architecture

Keywords: GPUs, general purpose, data parallel, sci-
entific computing, parallelization

1 Introduction

With the increasing programmability of graphics
hardware, as exemplified by the NVIDIA NV40 ar-
chitecture, new ways to access the computational
power of GPUs have emerged. This power, which
is growing at a faster rate than that of CPUs [1]
to augment the realism in computer generated im-
ages, can be used outside of its original application

�

Supported by DFG grant WI 576/10.

domain. Researchers are using GPUs to accelerate
highly parallel algorithms on regular data structures
[3].

GPUs can be (and often still are) programmed in
assembly language, but in recent years higher-level
languages have emerged. Still, the level of abstrac-
tion in theses languages is rather low, because most
of them are intended to merely provide means to
code small shaders to realize visual effects. The im-
plementors of data parallel algorithms would bene-
fit from higher abstraction, to be able to concentrate
on algorithmic optimization instead of, for exam-
ple, register usage optimization.

There are two promising GPU programming lan-
guages, CG [17] and BROOK [2]. Although with
both the graphics hardware is regarded as a stream-
ing co-processor, the closeness of CG to the under-
lying hardware is apparent in its syntax and seman-
tics. BROOK, albeit providing a higher level of ab-
straction, still requires the user to think in two dif-
ferent application domains: In the world of stream-
ing computations as well as in the traditional CPU
world.

With CGIS, Computer Graphics in Scientific
programming, we propose a language that enables
the user to write a program on a reasonably high
level of abstraction as is customary from CPU lan-
guages. A scientific programmer willing to enhance
the performance of his application should be able
to describe his algorithm in a single high-level lan-
guage, which is robust enough to persist the upcom-
ing advances in graphics hardware development.

The main contributions of this paper are the fol-
lowing. We argue for the need of using a single
language for data-parallel computations instead of a
multitude of languages. We present CGIS as an ex-
emplary language and argue for its suitability. Fur-
thermore we show how a compiler framework for
CGIS would look like.

We assume that the reader has background
knowledge in graphics, and thus we will use the fa-

VMV 2004 Stanford, USA, November 16–18, 2004

miliar notions of the graphics domain.1

In Section 2, we describe properties of current
GPUs and of available languages. Section 3 deals
with our new language, CGIS, comparing it in de-
tail with other languages. Section 4 concludes the
paper and gives an outline to future work.

2 Background Information

2.1 Hardware: State of the Art

We assume basic familiarity with programmable
GPUs on the readers’ part. For a more detailed
explanation of the capabilities of various genera-
tions, see [14]. The highlights of the latest pro-
grammable GPUs are advanced programmability of
the vertex and the fragment processor, more power-
ful texture access, the precision of computation, and
data-dependent control flow.

The NV40 architecture of NVIDIA [16] allows
data-dependent loops in vertex and fragment pro-
grams, guarding of instructions via condition codes,
and texture access in vertex programs. Input and
output to the programs, as well as the internal com-
putations, can be performed with single-precision
floating point values. In general, architectural limi-
tations on program size are disappearing, but APIs
might still impose artificial restrictions [16].

The reader should be aware that ATI’s GPUs still
work on data with 24 Bit floating point precision
and do not support as dynamic a control flow.

2.2 Programming Languages

While the graphics pipeline was becoming more
programmable, researchers began to implement var-
ious algorithms on GPUs, progressing on a way
paved earlier for nonprogrammable GPUs [5, 9, 19].
Programming GPUs in assembler is tedious work
and error prone as well. With the release of Di-
rectX 8 compatible hardware, enough boundaries
had fallen to bring out general purpose program-
ming languages. Those languages differ in the level
of abstraction, code generation and specification.

1We note that in our experience, this is a stumbling block in
talking to non-graphics people. We encourage papers and talks
targeted at potential users without a firm background in computer
graphics or graphics card technology to use denotations from the
domain of traditional programming. Indeed, this is precisely one
aspect that a language should allow: A programmer should not
necessarily need to know about texture memories and register
kinds to write code which runs efficiently on a GPU.

Currently, the most interesting representatives are
NVIDIA’s CG and BROOK [2, 11, 17]. The ab-
straction level of the OpenGL shading language is
alike to that of CG, so we do not discuss it further
[7]. [12] proposes an embedded language, SH, with
which the user programs the GPU inside normal
C++-code. However, there is still a clear distinc-
tion between GPU and CPU code in SH making it
effectively consist of two languages. It remains to
be seen whether SH will get as widespread a usage
as CG or BROOK.

2.2.1 CG (HLSL)

The first real high-level GPU programming lan-
guage is CG [11, 17]. It is a C-like language and
follows its archetype not only in syntax but also in
the philosophy to be a hardware-oriented language.
In general it corresponds to Microsoft’s High Level
Shading Language (HLSL) and was co-developed
by Microsoft and NVIDIA. For supporting differ-
ent architectures (both different GPU targets and
OpenGL/DirectX), CG uses profiles. Each profile
defines a subset of the CG language that can be
mapped to the corresponding architecture.

Although CG is lifting the abstraction level, the
user’s knowledge about intricacies of the hardware
is crucial to the efficiency of the generated code.
The programmer has to split code into different ker-
nels, write different code segments for architectures
of varying proficiency and has to take care of data
distribution and data flow by hand on the very low
level of single registers, pixels, or texels.

CG has been used in various general purpose ap-
plications, but authors found the quality of the gen-
erated code not always satisfying [20]. NVIDIA
tries hard to position (their) GPUs with CG as a
tool for general purpose programmability [8], so ad-
vances in support for this domain are likely.

2.2.2 BROOK

BROOK is a language developed at Stanford Uni-
versity in connection with the Merrimac supercom-
puting project [13]. The usage paradigm of BROOK

for GPUs sees the GPU as a streaming co-processor
scheduled by the application. The programmer
writes kernels with their operations on single stream
elements. These kernels either work in a classical
streaming model, or perform reduction operations.

666

In contrast to CG, the target hardware is com-
pletely hidden to the programmer. In fact, it is pos-
sible to set a particular hardware target at the appli-
cation’s run time. Additional to GPUs, BROOK also
works on CPUs, automatic multithreading included.

The auxiliary files of the BROOK system define
various C++ templates that are used to define the
input and output data. The user is responsible for
assigning the data to these streams. Furthermore,
control flow has to be specified explicitly. Clas-
sical approaches such as light-weight communica-
tion channels (especially occlusion queries) or sten-
cil buffer masking are not supported but could be
implemented by hand on top of the kernel codes,
but this means that the user now has to program in
three different languages: C++ for the main appli-
cation, CG for the streaming kernels, and custom
code for the graphics pipeline.

BROOK uses CG to generate GPU code for each
kernel. Thus, BROOK’s syntax as well as its per-
formance directly depend on those of CG, and each
kernel has to be mapped to a single pass.

3 CGIS

In this section we present the key aspects of CGIS,
followed by a comparison with CG and BROOK.

3.1 Design Goals

In designing CGIS, we aimed at the following
goals.

Single language: The user should be able to ex-
press a complete algorithm, including both the com-
putation that is ultimately mapped to the GPU’s pro-
cessors and the control flow to be performed on the
CPU, in the same language. This is particularly im-
portant, because it is a prerequisite for many of the
remaining goals.

Portability: One of our main goals is to accom-
modate the steady stream of new GPU architectures
starting from the existing ones. The language must
be robust to the evolution of GPUs for enabling the
user to get the most out of new hardware without
rewriting his code.

A unified language is a prerequisite for porta-
bility: The programmer should not need to rewrite
his implementation on an evolutionary step of hard-
ware, e. g., from NV3x to NV4x, when a larger part

of control flow can be performed in single pass pro-
grams.

High abstraction: Although CGIS aims at sci-
entific programming, and indeed its whole reason
for existence is the presumed time efficiency of im-
plementations of time sensitive algorithms, a higher
abstraction level than that provided by CG and as-
sembler would endorse widespread usage.2 Ab-
straction is also a prerequisite for portability.

Usability: A programmer should not need to
know details of all GPU characteristics. Of course,
a general knowledge of what is possible at all may
be required. After all, CPU programmers need to
know some aspects of language implementation and
hardware features to decide on efficient data struc-
tures or algorithms in high-level languages as well.

Efficiency: Scientific programmers willing to
use their graphics hardware to perform their cal-
culations likely do so to increase the performance
of their application. High performance can only be
gained with the generation of efficient code. We
want CGIS to be as light-weight as possible, so that
it is feasible to generate efficient code.

Familiarity: The language should be familiar to
a programmer. We have designed CGIS with C and
CG in mind to shorten the adaption process.

We stress one important feature relating to the
goals of a unified language and portability: The
concrete implementation of control flow should be
left to the compiler, which than can generate ade-
quate code for different kinds of architectures. On
some architectures (e. g., Pixel Shader 2.0) it might
be necessary to divide the control flow decisions be-
tween the host and the graphics card, since they can-
not all be realized on the GPU. We are convinced
that it is not helpful to condense this implementa-
tion artifact in the language, because upcoming ar-
chitectures (e. g., Pixel Shader 3.0) will have less
and less restrictions.

3.2 Language Features

3.2.1 Overall Structure

A CGIS source file is divided into three parts:
CODE, CONTROL and INTERFACE.

2The authors of [20] report on having used CG for an algorithm,
although it used 52 instructions instead of a hand-written assembly
program with 19 instructions. They argue that even this decrease
in runtime efficiency is offset by the increase in productivity.

666

The CODE section describes the portion of a par-
allel computation for a single data item. Herein, the
code has access to the data constituting this item
only.3 The CONTROL section has access to the
complete array of items. As such, here is the place
to specify the computations to be performed in par-
allel on every data element. Control flow may di-
verge only inside the CODE section. The INTER-
FACE section declares external data. These data
can comprise user defined structures: It is not nec-
essary for the application code to split structures
into their constituents (see Section 3.6.2). The com-
piler generates data access code for the data struc-
tures and takes care of distributing and rearranging
the data as well as possible for a given target.

We emphasize that the division into the various
sections is fundamentally different from BROOK’s
two-languages approach. We do not introduce three
different languages: The separation into sections
serves to structure the code and to point out the nat-
urally distinct levels of the computation.

In our approach, a single compiler has complete
control over the generated code, and, in particular,
over the data layout. Contrary to BROOK, where
optimization decisions by the C++ compiler cannot
take the generated code from the CG compiler into
account, and vice versa, the CGIS compiler has the
overview over the complete algorithm.

3.2.2 Features of CGIS

The language comprises features to allow easy
specification of data-parallel computations.

� Control structures: The targeted algorithms
work on sets of homogeneous data that can be
processed in parallel. CGIS supports this, for
example, by a forall construct for parallel
loops.

� Data structures: CGIS allows multi-dimen-
sional arrays of structures and can cope with
specialized access patterns (index transforma-
tions).

� SIMD code generation: It is possible to auto-
matically exploit instruction level parallelism
by generating SIMD code from scalar specifi-
cations [10]. This is a feature absent in other
GPU languages, yet very valuable to general
purpose programmers: Often it is more intu-
itive to specify a computation on scalars and

3Special syntax can be used to lift this requirement in a limited
way, to implement convolution operators for example.

let the compiler figure out the details of effi-
cient implementations on a SIMD architecture.

� Specialized operators: Because the targets of
CGIS, GPUs, and SIMD CPUs, feature ded-
icated vector instructions such as dot prod-
ucts or cross products, these operations are
lifted to language level through operators, as
in [12], operating on CG-like data types (e. g.,
float4).

� Hints: Although a compiler can extract certain
kinds of information from the code, sometimes
the user has a greater knowledge of particular-
ities of the algorithm or data structures. This
information can be communicated to the com-
piler via hints to guide the optimization. For
example, the compiler can be instructed that a
particular function featuring a loop should best
be implemented in one pass, possibly with un-
rolling for less capable architectures, whereas
another loop should be carried out with help of
the CPU.

In line with the current hardware capabilities,
CGIS does not allow (mutually) recursive proce-
dures. The programmer has to explicitly simulate
the (parameter) stack in CGIS. With regard to effi-
ciency, this is no substantial restriction, because it
is unlikely that GPUs will gain the power to allow
true recursive procedures (supporting stack frames
and the like) in the foreseeable future.

3.3 Example

As an example, we have chosen an implemen-
tation of ray-triangle intersection with early kill,
as displayed in Figure 1. All rays (specified by
the extern input line in the INTERFACE sec-
tion) are intersected with a dynamic list of trian-
gles (also in INTERFACE). Both are arrays of ar-
bitrary size, denoted by [,] (two-dimensional) or
[] (one-dimensional), respectively. As soon as a
hitpoint for a particular ray is found, the computa-
tions for that ray are stopped.

Here, the CONTROL section is pretty short: It
tells the compiler that the computation should be
done in parallel on the input rays. There are sev-
eral ways to access the external data. It is possible
to use explicit indexing or sequentially access each
element of a given array in standard C order as de-
noted by :2D here.

The CODE section includes two functions for
which hints support the compiler’s optimization,

666

PROGRAM EarlyKillRayTriangleIntersection;

INTERFACE

typedef struct {
float3 a, b, c;
int id;

} tri_t;

typedef struct {
float3 origin, direction;
float near, far;

} raytype_t;

extern input raytype_t[,] raydata;
extern output int[,] rayhits;
extern input tri_t[] t_list;

CONTROL

forall (raytype_t r in raydata:2D;
int tid in rayhits:2D) do {

earlyKillIntersect (r, tid, t_list);
}

CODE

function earlyKillIntersect
(input raytype_t ray, output int tid,
input tri_t[] triangleList)

#HINT(GPU: pure) {
foreach (tri_t t in triangleList) {

intersection_triangle (tid, ray, t);
if (tid != -1) break;

}
}

function intersection_triangle
(output int tid, input raytype_t ray,
input tri_t t)

#HINT(GPU: pure, singlepass) {
float3 edge1 = t.b-t.a;
float3 edge2 = t.c-t.a;
// &: cross product, |: dot product
float3 pvec = ray.direction & edge2;

float det = edge1 | pvec;
if ((det >= -0.005) && (det <= 0.005))

{tid = -1; return;}

float3 tvec = ray.origin - t.a;
float lambda = tvec | pvec / det;
if (lambda < 0.0 || lambda > 1.0)

{tid = -1; return;}

float3 qvec = tvec & edge1;
float mue = ray.direction | qvec / det;
if((mue < 0.0) || ((lambda + mue) > 1.0))

{tid = -1; return;}

float td = edge2 | qvec / det;
if ((td < ray.near) || (td >= ray.far))

{tid = -1; return;}

tid = t.id;
}

Figure 1: A Möller-Trumbore ray-triangle intersec-
tion [15] algorithm with early-kill in CGIS. The in-
terface section describes the external input, whereas
the control section specifies a parallel iteration over
a set of rays. The code section describes the com-
putations to be done for each single ray.

classified by a tag (here: GPU) for specific targets.
The pure hint reassures that this function has no
access to data elements of neighboring elements in
a parallel computation. singlepass means that
the function intersection_triangle shall
be implemented in one pass, if possible. Its absence
in earlyKillIntersect allows the compiler
to use the CPU for the iteration: The CPU would
then feed the elements of the triangle list to the GPU
one by one, possibly in the vertex parameters.

3.4 Compiler Infrastructure

Figure 2 shows the infrastructure of the compiler
and the runtime system. The compiler takes source
code in CGIS (see Figure 1 for an example) as in-
put and creates both auxiliary C++-code and code
for the target architecture. Currently we plan to
support fragment shader and SSE output, although
other formats may be included in the future.

Focusing now on the GPU output, there are two
possibilities for a compiler of a higher-level lan-
guage: Either it can use CG for the GPU program
code and rely on the CG compiler, or it can directly
compile down to assembly language code.4 Should
CG develop slower than expected, the compiler
might generate GPU assembly code right away.

The user does not interact with the graphics card
or the generated GPU code directly. Instead, he
calls the provided data transfer functions in the aux-
iliary code and orders the computation to be started.
The various runtime systems and outputs just have
to be linked with the application code. The runtime
system for the GPU branch uses OpenGL for plat-
form compatibility.

Note that the programmer is both freed from the
tedious details of the hardware and is not responsi-
ble for control flow and data layout code, because
the glue code takes care of these issues.

Let us now briefly consider SSE output. In recent
years, mainstream CPUs were improved with mul-
timedia extensions. Special instructions perform
arithmetical operations on small tuples of data, usu-
ally 4-tuples [6]. Because the SIMD parallelism on
CPUs strongly resembles the SIMD parallelism on
GPUs, support for CPUs seems reasonable.

The CPU output is especially important for de-
bugging. The user does not have to change from

4Note that even the assembly code is subject to optimization
such as reordering of instructions inside the assembler in the de-
vice driver.

666

his familiar CPU debugging environment, but can
use the advanced features of CPU debugging tools.
Currently, debugging tools for GPU code are still
less powerful than their CPU counterparts.

3.5 Evaluation

In the following we evaluate the design of CGIS
with respect to the design goals in Section 3.1.

Single language: CGIS enables the user to spec-
ify complete algorithms in a single language. The
user needs to call C++ functions for data transfer
and to start the computation, but this is decoupled
from the algorithm.

Portability: The fact that the code generation
as well as the data layout are handled by the com-
piler, makes CGIS more robust with respect to fu-
ture changes in quantitative parameters of the un-
derlying architecture.

High abstraction: The level of abstraction is ad-
equate for the expression of scientific algorithms.
Object-oriented features could be realized, but our
functional approach seems well suited to the hard-
ware.

Usability: We abstract the hardware so that de-
tailed knowledge about the intricacies of GPUs are
not necessary. Additional information can be com-
municated to the compiler via hints.

Efficiency: Clearly, as we do not have a com-
plete compiler yet, we cannot make claims about
the efficiency of CGIS implementations. Our provi-
sional results convince us, though, that an efficient
implementation is possible.

Familiarity: The CGIS syntax bears strong re-
semblance to C and CG. The main omission with
respect to C is the lack of pointers. In CGIS, the
programmer can make indexed lookups into arrays.
There is no need for general pointer structures on
the GPU level, as these could not be implemented
efficiently anyway. See [11] for a detailed discus-
sion of the absence of pointers in CG.

3.6 Comparison with other Languages

3.6.1 CG

CGIS strongly differs from CG. Among the goals
of CG was an easy and incremental change from tra-
ditional hand-written shaders to CG shaders. There-
fore, CG targets only one particular aspect of GPU
programming: Coding a particular shader [11].

Optimization deficiencies of the current compiler
aside, when writing an application using CG ker-
nels, the main difficulties of data layout and distri-
bution, communication, and global control flow lie
still in the hands of the programmer.

3.6.2 BROOK for GPUs

The prominent feature of BROOK is the abstraction
of the peculiarities of the target architecture by pre-
senting it as a streaming processor. It is truly in-
visible to the user that a program written in BROOK

runs on a GPU instead of the CPU. But still, the pro-
grammer has to be well aware of the target, because
of the data access and control flow restrictions.

The streaming model of BROOK is adequate for
tasks easily subjugated under the streaming tem-
plate. But it is not suited for a large set of al-
gorithms that a scientific programmer might want
to implement profitably on GPUs. The benefit of
this abstraction notwithstanding, it omits the us-
age of graphics hardware features such as occlusion
queries, which can be efficiently applied to commu-
nicate between GPU and host. In our example in
Section 3.3, BROOK would not support data trans-
fer through vertex parameters, which is the best way
to pass the triangle data to the GPU.

The streaming model of BROOK and the use of
CG as the effective language for the kernels add
up to a certain limitation of applicability. Inher-
ent in the BROOK model is the absolute distinction
of CPU computations and GPU computations. The
CGIS triangle loop in earlyKillIntersect
(Figure 1) can be compiled to work on GPU alone
or on GPU with help of the CPU, because CGIS is a
unified language. This is not possible with BROOK.

We stress that the approaches of BROOK and
CGIS are fundamentally different. BROOK ab-
stracts the GPU as a streaming co-processor and
provides means to program this co-processor.
CGIS, on the other hand, gives the possibility to ex-
press an algorithm, letting the compiler choose how
to implement it using whatever mechanisms on the
GPU are suitable.

Put another way, the languages approach the task
from two different directions. BROOK is an abstrac-
tion of streaming hardware, which can be used to
implement data-parallel algorithms; CGIS is an ab-
straction of data-parallel hardware.

Currently, BROOK does not support streams of
structured data, which is uncomfortable to a pro-

666

�

usage
���������������������������

in-/output CGIS
source

CGIS
compiler

CG-kernels SSE-kernels

GPU-RT CG-comp. SSE-RT

GPU-kernels

C++ glue

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � �
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�����
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

main
application

Figure 2: Overview of the CGIS compiler infrastructure. Dotted line denotes usage. Round nodes are
documents, angular nodes are programs. Double framed nodes denote user supplied code.

grammer. As noted in Section 3.2, CGIS also plans
to support arrays of structs.

3.6.3 Data-Parallel Languages for CPUs

Existing CPU languages provide several means
to express parallel computations (cf. Fortran or
OpenMP [18]). However, the architectures tar-
geted by those languages are significantly different
to GPUs. Therefore, we would have to adapt these
languages as well to fit to GPUs.

A prime distinction of GPUs and CPUs lies in the
different memory architecture and the way in which
the execution units can be scheduled. In contrast
to the CPU world, the parallel execution units on
GPUs are indistinguishable. Furthermore, although
they share a common memory, the texture memory
with its read-/write limitations is strongly distinct
from the random access CPU memory. Therefore,
many provisions in these languages cannot readily
be applied to GPU programs.

4 Conclusion and Future Work

We have discussed the need of a new language
for data-parallel computations of GPUs even in the
presence of BROOK and CG. The main idea here
is to provide a single, unifying language to express
complete algorithms on homogeneous data. The
key aspects are increased optimization potential and
robustness. Global optimizations are possible only
with knowledge of the whole source. Furthermore,
only if all aspects of data layout, control flow, distri-
bution into kernels and usage of the GPU’s facilities
are under the control of the compiler, the generation
of efficient code without the programmer’s explicit
intervention is possible. These subaspects are also
prerequisites for robustness with respect to GPU de-
velopment. If the user is in charge of, for example,
data layout, it is the user who has to adapt it with
each new hardware generation. Thus, we believe
that a unified language is the only approach likely
to give widespread usage to GPUs for scientific pro-
gramming.

When designing CGIS, we took care in giving

666

programmers the opportunity to use high-level con-
trol and data structures that can be mapped on cur-
rent as well as future hardware. By keeping the lan-
guage simple, we will be able to quickly adapt the
compiler to new hardware features. The absence of
strictly GPU-related features makes retargetability
to SSE code feasible.

We believe that the majority of algorithms that
are at all efficiently implementable on GPUs can
be expressed easily in CGIS. After the implementa-
tion has been finished, it will be evaluated with vari-
ous successfully on GPUs implemented algorithms,
such as ray tracing [19], linear algebra [9] or simu-
lations [4].

Acknowledgments:

Thanks to Reinhard Wilhelm, Jörg Schmittler, and
Sven Woop for many fruitful discussions.

References

[1] M. BRETERNIZ JR., H. HUM, AND S. KUMAR,
Compilation, architectural support, and evaluation
of SIMD graphics pipeline programs on a
general-purpose CPU, in 12th International
Conference on Parallel Architecture and
Compilation Techniques (PACT’03), 2003.

[2] I. BUCK, T. FOLEY, D. HORN, J. SUGERMAN,
K. FATAHLIAN, M. HOUSTON, AND

P. HANRAHAN, Brook for GPUs: Stream
computing on graphics hardware, in SIGGRAPH,
2004.

[3] General-purpose computation using graphics
hardware. http://www.gpgpu.org, 2004.

[4] M. J. HARRIS, G. COOMBE, T. SCHEUERMANN,
AND A. LASTRA, Physically-based visual
simulation on graphics hardware, in Proceedings of
the Eurographics Workshop on Graphics Hardware,
2002, pp. 109–118.

[5] K. E. HOFF III, T. CULVER, J. KEYSER, M. LIN,
AND D. MANOCHA, Fast computation of
generalized Voronoi diagrams using graphics
hardware, in SIGGRAPH, 1999, pp. 277–286.

[6] INTEL, Programming with the streaming SIMD
extensions (SSE), in Intel Architecture Software
Developer’s Manual, Vol. 1: Basic Architecture,
1999.

[7] J. KESSENICH, D. BALDWIN, AND R. ROST, The
OpenGL Shading Language, V. 1.10, April 2004.

[8] D. KIRK, Technology directions.
http://developer.nvidia.com/docs/
io/4106/Technology_Directions.pdf,
2003. Slides of a presentation at NVIDIA Analyst’s
Day.

[9] J. KRÜGER AND R. WESTERMANN, Linear
algebra operators for GPU implementations of
numerical algorithms, in SIGGRAPH, 2003.

[10] S. LARSEN AND S. AMARASINGHE, Exploting
superword level parallelism with multimedia
instruction sets, Tech. Rep. LCS-TM-601, MIT
Laboratory for Computer Science, November 1999.

[11] W. R. MARK, R. S. GLANVILLE, K. AKELEY,
AND M. J. KILGARD, Cg: A system for
programming graphics hardware in a C-like
language, in SIGGRAPH, 2003.

[12] M. D. MCCOOL, Z. QIN, AND T. S. POPU,
Shader metaprogramming, in Proceedings of the
Eurographics Workshop on Graphics Hardware
2002, ACM, 2002, pp. 57–68. Revised version.

[13] MERRIMAC, Project homepage, 2004.

[14] MICROSOFT, DirectX reference manual.
http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/
direct%x9_c/directx/graphics/
reference/shaders/shaders.asp, 2004.

[15] T. MÖLLER AND B. TRUMBORE, Fast, minimum
storage ray-triangle intersection, Journal of
Graphics Tools, 2 (1997), pp. 21–28.

[16] Cinefx 3.0, tech. rep., NVIDIA, March 2004.

[17] NVIDIA, Cg Toolkit User’s Manual, Release 1.2,
January 2004.

[18] OPENMP ARCHITECTURE REVIEW BOARD,
OpenMP C and C++ application program
interface, March 2002.

[19] T. J. PURCELL, I. BUCK, W. R. MARK, AND

P. HANRAHAN, Ray tracing on programmable
graphics hardware, in SIGGRAPH, 2002.

[20] T. J. PURCELL, C. DONNER, M. CAMMARANO,
H. W. JENSEN, AND P. HANRAHAN, Photon
mapping on programmable graphics hardware, in
Proceedings of the Eurographics Workshop on
Graphics Hardware, 2003.

666

