
The Development of the Data-Parallel
GPU Programming Language CGiS

Philipp Lucas�, Nicolas Fritz�, and Reinhard Wilhelm

Compiler Design Lab, Saarland University, Saarbrücken, Germany
{phlucas, cage, wilhelm}@cs.uni-sb.de

Abstract. In this paper, we present the recent developments on the
design and implementation of the data-parallel programming language
CGiS. CGiS is devised to facilitate use of the data-parallel resources of
current graphics processing units (GPUs) for scientific programming.

1 Introduction

The last few years have seen a rapid development in programmable graphics
hardware. To exploit the vast computational power of these highly parallel archi-
tectures, scientists successfully ported algorithms to GPUs [5]. This is commonly
known as General Purpose Programming on GPUs (GPGPU).

While highly tailored solutions could be implemented by specialists, the com-
mon programmer without knowledge of the details of GPU programming was
left out. For wider access, higher-level languages have emerged, such as Brook
for GPUs [1], Sh [4], CGiS [2, 3] and the recent Accelerator [6].

CGiS is designed to improve GPU accessibility by further raising the ab-
straction level. Scientific programmers not accustomed to programming graphics
hardware can transparently use performance enhancing features of the target.
Generating efficient GPU code for a general purpose language program is a de-
manding task. The goal of the CGiS project is to explore the possibilities of
high-level data-parallel programming.

This paper presents recent developments of CGiS, its compiler and its appli-
cability with respect to [2]. By example, we also show that, even with the higher
level of abstraction, parallel algorithms can be implemented efficiently on GPUs
with CGiS.

The remainder of this paper is organised as follows. Section 2 describes CGiS’
decisive features, and Section 3 shows a more detailed example. Section 4 con-
cludes the paper with an outlook on future development and work in progress.

2 CGiS

In contrast to other GPU languages, CGiS offers the possibility to write a whole
algorithm in one language. To achieve portability and performance optimisa-
tion possibilities, the compiler has full control over code and data distribution.
� Supported by DFG grant WI 576/10-3.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, pp. 200–203, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Development of the Data-Parallel GPU Programming Language CGiS 201

Because the programmer never sees the actual GPU kernels, the compiler may
reorder functions into kernels for improved code distribution. The compiler can
thus use upcoming hardware generations, so that CGiS programs do not have
to be rewritten.

2.1 CGiS Compiler Architecture

Figure 1 shows the usage of CGiS. The CGiS compiler takes a CGiS source
file as an input and generates GPU and C++ code. Together with the user-
provided code which consists of calls to data passing and initialisation rou-
tines, and with the runtime library, an executable can be linked. It uses the
GPU transparently. The GPU is accessed through OpenGL, and the GPU code
is written in standard assembly language. Thus, the compiler supports by de-
sign several back-ends. Back-ends for multi-media CPU instruction sets are also
planned.

CGiS source CGiS compiler

GPU code

C++ code CGiS runtimeapplication

Fig. 1. Basic usage pattern of CGiS. Dotted lines denote linkage, solid arrows denote
in- or output. Darker, green rectangles denote user-provided sources, the other rectan-
gles are the output of the CGiS compiler. The ellipses stand for the CGiS base system
components. There is no direct connection between the application and the GPU.

2.2 Features

CGiS is a data-parallel programming language, focused on GPUs. It allows
parallel and independent computations on streams, as well as reductions, e. g.
summing up the elements of a stream into a scalar. For further details, see [2].

The CGiS compiler takes care of optimisations to accommodate inexperi-
enced GPU programmers, but advanced programmers are allowed to specify
guidings and hints; for example, whether a certain conditional is to be translated
with if-conversion or with native conditional instructions on architectures sup-
porting such. The generated program drives the computation and all neces-
sary rearrangements of data and the data interface to the main application.
The GPU stays invisible to the programmer. Textures may be exposed to the
outside for visualisation, or shown directly. Like other languages, CGiS ex-
cludes recursive functions and pointers because of the hardware’s memory
constraints.

Tests have shown that for naturally parallel algorithms, CGiS programs can
offer performance benefits with respect to CPU code [3], although the quality is
less than that of hand-written GPU code.



202 P. Lucas, N. Fritz, and R. Wilhelm

3 Example: Refraction

In this section we show how CGiS programs differ from programs in other GPU
languages. This is exemplified by a program computing wave propagation and
refraction on watery surfaces.

CGiS programs consist of three sections: An INTERFACE section declares scalar
and stream variables, a CODE section defines functions working on single elements
of streams and a CONTROL section defines how these functions work together. Be-
cause of the aforementioned hardware constraints and a desired closeness to C,
the CODE section is similar to other languages. In the following, we will concen-
trate on the other two sections.

In the INTERFACE section, the programmer may provide ids to the compiler
for a detailed specification of packing streams into textures. If not, the compiler

PROGRAM viswave;

INTERFACE

extern inout float LAST<_,_> : texture (1) A; // _ is a size wildcard.
extern in float CURRENT<_,_> : texture (2) A; // Flipped on each step.
extern in float RINDEX, DAMP, WID, HEI; // Pass as program parameters.
intern float X<_,_> : texture (4) R; // These two streams shall reside
intern float Y<_,_> : texture (4) G; // in the same texture (id=4).
extern in float3 TEXTURE<_,_>: texture (3) RGB; // Use RGB components
extern out float3 IMAGE<_,_> : texture (5) RGB; // for visualisation.

CODE
... // Declare kernels called from this section and from CONTROL.

CONTROL

// Single step wave propagation:
forall (float last in LAST; float current in CURRENT){
propagate (last, current, indexX(last), indexY(last), DAMP, WID, HEI);

}
// Compute refractions in X- and Y-dimension:
forall (float x in X; float y in Y; float height in LAST){
refractionX (RINDEX, x, height, indexX(height), WID);
refractionY (RINDEX, y, height, indexY(height), HEI);

}
// Compute refracted image:
forall (float3 pixel in IMAGE; float height in LAST;

float x in X; float y in Y){
render (TEXTURE, pixel, height, x, y);

}
// Display image on screen:
show(IMAGE);

Fig. 2. Part of a CGiS program for calculating refractions



The Development of the Data-Parallel GPU Programming Language CGiS 203

will try to minimise the texture accesses. Another use for the ids is data passing
between separately compiled programs, which is implemented by shared textures.
For display on the screen, the image should reside in specific colour components,
which also is specified. Scalar values are always passed as fragment program
parameters.

The INTERFACE section gives rise to C++ functions, which the application in-
vokes to pass and retrieve the data. All data transfer is handled by the generated
code, and the GPU is invisible.

The CONTROL section specifies the calls of kernels which operate on streams,
passing index values, stream elements or whole arrays of data. The compiler gen-
erates code to upload the kernels, hook necessary textures, run the kernels and
copy the data back to textures. Again, the GPU remains invisible. This exam-
ple also features a show statement for interactively displaying the computation
results.

4 Conclusion and Future Work

We have described the CGiS language and shown that it is feasible for GPU
applications. In special domains, GPU implementations of CGiS programs offer
good performance, even at the current development stage of the compiler.

With the design of CGiS finished, we focus our future efforts on the compiler
framework. What remains to be done is to implement more program analyses and
more optimisations to the code generator, thus removing some of the overhead
for more complex programs. The compiler also has to be retargeted to the most
recent generation of GPUs and to SIMD-CPUs. When the compiler framework
is ready, it will be released as Open Source Software under the BSD license.

References

1. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: Stream computing on graphics hardware. In SIGGRAPH,
2004.

2. N. Fritz, P. Lucas, and P. Slusallek. CGiS, a new language for data-parallel GPU
programming. In “Vision, Modeling, and Visualization” Workshop, 2004.

3. P. Lucas, N. Fritz, and R. Wilhelm. The CGiS compiler—a tool demonstration. In
A. Mycroft and A. Zeller, editors, Proceedings of the 15th International Conference
on Compiler Construction, LNCS. Springer-Verlag, 2006.

4. M. D. McCool, Z. Qin, and T. S. Popu. Shader metaprogramming. In Eurographics
Workshop on Graphics Hardware, pages 57–68, 2002. (Revised).

5. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and
T. J. Purcell. A survey of general-purpose computation on graphics hardware. In
Eurographics 2005, pages 21–51, 2005.

6. D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Simplified programming of graphics
processing units for general-purpose uses via data-parallelism. Technical Report
MSR-TR-2005-184, Microsoft Research, December 2005.


	Introduction
	CGiS
	CGiS Compiler Architecture
	Features

	Example: Refraction
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




