
International Journal on Software Tools Technology Transfer manuscript No.
(will be inserted by the editor)

Lili Tan

The Worst-Case Execution Time Tool Challenge 2006

Abstract The first international Worst Case Execution
Time (WCET) Tool Challenge in 2006 used benchmark
programs to evaluate academic and commercial WCET
tools. It aimed to study the state-of-the-art in WCET
analysis. The WCET Tool Challenge comprised two par-
allel evaluation approaches: an internal evaluation by the
respective tool developers and an external test by a neu-
tral person of an independent institute. The latter was
conducted by the author of this paper. Focusing on the
external test, we describe the rules, benchmarks, partic-
ipants and discuss the obtained results.

Keywords Timing Analysis · Worst Case Execution
Time · WCET · Hard Real Time · Embedded Systems

1 Introduction

The Worst-Case Execution Time (WCET) denotes the
longest execution time that a software program could
take to run on a target processor under the worst case
timing scenario. WCET information is required for sche-
dulability analysis in safety-critical hard real-time sys-
tems, like flight control or automatic brake control sys-
tems, where timing constraints must be guaranteed.

Industrial demand on WCET analysis increases, since
embedded control units and embedded devices are be-
coming more complex and pervasive. Therefore WCET
analysis has received a lot of attention in recent years.
This research results in a broad range of different ap-
proaches to WCET analysis and the development of var-

This work was supported by the ARTIST2 European Network
of Excellence.

Lili Tan
ICB/Computer Science, University of Duisburg-Essen
Dependability of Computing Systems
Tel.: +49 -(0) 201-183 2340
Fax: +49 -(0) 201-183 2149
E-mail: lili.tan@icb.uni-due.de

ious WCET analysis tools, which predict the WCET up-
per bounds.

To avoid isolated results within the research commu-
nity and to make the area more transparent to indus-
try, there has recently been a joint effort to compare the
different approaches. An overview of the area of WCET
analysis and a description of commercial tools for WCET
analysis as well as research prototypes was published in
a recent paper [43]. The focus of that work was to give
a comprehensive overview, based on contributions from
members of the community, and did not aim for an ex-
perimental evaluation.

The work presented here is based on a complimentary
approach, an experimental evaluation of different WCET
tools. The Challenge Working Group, organized by Jan
Gustafsson of Mälardalen University, selected the bench-
mark programs, decided on the test rules and assigned
the author of this paper to carry out the evaluation.
While [36] concentrates on the design of the Challenge
and summarizes test results obtained by tool develop-
ers, this paper focuses on the independent evaluation. It
provides an in-depth analysis and interpretation of the
results, extending a previous paper [40].

Outline. The remainder of the paper is organized as fol-
lows. We introduce background information on WCET
and WCET analysis in Section 2. Section 3 lists the Chal-
lenge rules and Section 4 give a short introduction of
the participating tools. The benchmark programs are de-
scribed in Section 5. Section 6 explains how the tests were
carried out, and Section 7 presents the detailed results of
the tests and. Section 8 discusses the results. Section 9
concludes and gives an outlook on future work.

2 Background

2.1 Worst-Case Execution Time

Hard real-time systems require an upper bound on the
execution time of a program. Such a bound ensures that

2 Lili Tan

even in a worst-case scenario the system will meet its
deadlines. These bounds should be tight, i.e. as close
to the worst-case as possible, to avoid unnecessary and
costly safety margins. When determining such bounds,
the input-dependence of execution time is one dimen-
sion of complexity. Depending on the inputs, e.g. start-up
configuration variables for operational modes, or online
sensor readings, the running time can vary significantly.

WCET analysis does not try to solve the halting
problem. It is assumed that upper bounds on the num-
ber of times a loop is traversed, so-called loop bounds,
and bounds on recursion depth can be determined ei-
ther automatically or by manual annotation. Determin-
ing sufficient program control-flow information alone is
a challenging problem. However, the hardware architec-
ture also has a significant impact on execution time.

Processors employed in hard real-time systems range
from micro-controllers such as the Infineon C16X proces-
sors and the Motorola HCS12 processor to more complex
processors such as the PowerPC 565 (and its successors).
Features of current processors like caches lead to a high
variability of the execution time of instructions, e.g. a
memory access that can be served from the cache is sig-
nificantly cheaper than an access to main memory. In
addition, superscalar processors execute several instruc-
tions of a sequential program in parallel in an instruction
pipeline. The state of the pipeline, occupation of pro-
cessor units, contents of buffers, the cache content, and
peripherals all influence execution time and make exe-
cution time highly sensitive to execution history. This
makes WCET analysis a challenging task.

2.2 Industrial Expectation

To enable widespread use of timing analysis in the in-
dustry, the timing analysis tools have to meet several
requirements.

1. Fundamental requirements: To be applicable at all, a
tool must be able to analyze the programs. Analyz-
ability depends on the structure of the program as
well as on the target processor and the compiler used
to generate the binary code, all of which have to be
supported by the tool.
Also, the WCET bound must be correct, that is,
the result must be a safe approximation of the ac-
tual worst-case execution time: The tool may over-
estimate, but must not under-estimate.

2. Quality requirements: To be applicable in a practical
setting, the computed bound should be tight: The
over-estimation should be small.

3. Usability requirements: Usability refers to the extent
to which a product [18], e.g., a software tool, can be
used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified
context of use. A one-click solution is always desir-
able. Although this is in general infeasible, a tool

should come as close as possible to this goal. The user
should not be required to have specialist knowledge
about WCET technology in general or the specific
tool in order to use the tool and achieve satisfying
results. Thus, the technology should be encapsulated
inside the tool. If user effort is required to improve
analysis results, the user should receive assistance by
the tool in providing necessary annotations.

4. Integration requirements: Furthermore, the tool needs
to be integrated into the software development pro-
cess. To this end, input format and output format
as well as intermediate results should be supported
in the standard development process. For example, a
WCET result which should be used in schedulability
analysis has to be delivered in a suitable, possibly
standardized format.

Under all these constraints, a tool should provide its re-
sult in a tolerable time.

2.3 WCET Tool Design

A WCET analysis tool takes as input a program and a
description of the target architecture. Such a tool usually
runs on a host computer and produces an upper bound
on the execution time of the program on the target ar-
chitecture, which often is different than the architecture
of the host computer, i.e. the analysis software does not
require access to the physical target architecture.

The standard tool architecture is to separate WCET
analysis into three phases: a control-flow analysis phase,
a micro-architectural phase, and an end phase combining
the total effects resulting from both the target processor-
dependent and independent analyses.

Control-Flow analysis phase. Most WCET tools analyze
executables of the programs. In order to support subse-
quent analyses, the first step is to reconstruct the con-
trol flow graph from the executable. The control-flow
graph represents a superset of the possible execution
paths of the program that might be traversed during
its execution. The complexity of that step depends on
the structure of the code, and thus of the input program
and the compiler. In particular, unstructured code, e.g.,
breaks, and multiple returns in a loop body and uncon-
ditional jumps (gotos) make the analysis more compli-
cated. WCET tools are typically geared towards a par-
ticular compiler, so that control flow reconstruction can
recognize compiler-specific patterns.

Some paths through the control flow graph do not
correspond to actual program executions, e.g. a path
that traverses two conditions that exclude each other is
an admissible control flow path. These paths are called
infeasible paths.

Information about infeasible paths, loop bounds and
even about control flow can be determined by static pro-
gram analysis techniques. Static program analyses obtain

The Worst-Case Execution Time Tool Challenge 2006 3

information about all runs of a program without execut-
ing it. Abstract interpretation is a theory in which static
program analyses that refer to deep semantics properties
can be expressed.

Value analysis uses abstract interpretation to deter-
mine information about the values of registers and mem-
ory locations. This information can be used for control
flow reconstruction, e.g. to resolve targets of jumps. Fur-
thermore, a value analysis step is necessary for estab-
lishing memory access locations as well as loop bounds.
Furthermore, certain infeasible paths can be discovered
through value analysis.

Precise WCET analysis requires detection of loop
bounds. This is complicated by program features such
as nested loops, and bit operations on loop control vari-
ables. Due to the importance of loop bounds for WCET
analysis and the complexity (in general, infeasibility) of
accurate loop bound detection, this often requires users
to provide such information as annotations.

If the processor does not feature a dedicated floating
point unit, such computations have to be implemented
by software. This complicates the analysis because loop
bound detection for such code is particularly difficult.

Micro-architectural Phase. The description of the archi-
tecture is an executable model that keeps track of the
micro-architectural features of the processor. Depending
on the target processor, this may comprise the pipeline
behavior, the state of the cache, the branch prediction
unit, the translation lookaside buffer, behavior of a float-
ing point unit, the memory hierarchy and the bus.

For a completely accurate WCET determination, all
of the processor internals would have to be taken into
account. In practical tools, an abstraction has to take
place to keep analysis cost manageable. This abstraction
can decrease the precision of the analysis.

Combined Calculation Phase. In many static WCET an-
alyzer tools, the final phase is to combine the results of
program control-flow analysis and the hardware micro-
architectural timing effects by using Integer Linear Pro-
gramming (ILP), which yields a WCET bound for the
program.

Usability and Integration. Due to the complexity of the
problem, WCET tools do not always offer a push-button
solution. In some cases, the run time of the tools and
the precision can significantly benefit from annotation.
Furthermore, in case of analyses not being able to auto-
matically determine facts such as loop bounds, the user is
required to provide these as annotations. A tool’s meth-
ods of demanding such information and of hinting the
user to annotations improving the results form a large
part of its usability.

The WCET tool must be designed appropriately to
enable a tight integration into standard tool chains. This
means that its inputs and outputs must fit into the stan-
dard development process.

2.4 Validation and Evaluation

All of the WCET tools are software products, and as such
may be subjected to verification and validation. While
the tool providers themselves may verify their tools, an
external user is often not able to carry out a detailed
validation. The reason is that the tools work as a black
box, only outputting certain results. These cannot al-
ways be easily mapped to the work phases, and as such
a complete validation is not possible from the outside.

However, we can evaluate the tools according to the
expectations of the industry. In this context, degree of
automation, support for certain language constructs, us-
ability of tools, and precision of computed WCET bounds
are important evaluation criteria. This is the goal of the
WCET Tool Challenge, as detailed in the next sections.

3 Challenge Rules

3.1 The Challenge

A WCET Tool Challenge was discussed at the WCET
Workshop 2006, a satellite workshop of the 18th Euromi-
cro Conference on Real-Time Systems (ECRTS 06). For
completeness, we briefly summarize the main goals of
the Challenge (a more detailed mission statement can
be found in [36,32]):

– collect a common set of benchmarks
– develop metrics for evaluation
– spur development of WCET analysis tools
– connect developers of tools.

The Challenge announcement with a call for participa-
tion was published in August 2006 in [32]. It was also
distributed to known WCET research groups and com-
panies in the world as well as to a WCET discussion
group [30]. The Announcement introduced the require-
ments and rules for the competition, proposed bench-
marks, and specified the deadline for registration and
the publication of the test results.

WCET tool providers were requested to submit reg-
istration data to the organizer of the Challenge, Jan
Gustafsson, by email before August 31st 2006. The regis-
tration data included information about tool names, the
supported target processors and compilers.

Tool providers were given the opportunity to run
their tool on the Challenge benchmark programs and
report their results to the Challenge organizer [36].

Furthermore, an independent test person, who car-
ried out tests on the same Challenge benchmarks, evalu-
ated all of the tools on-site with some assistance by the
tool developers. This is the external test, on which we
focus in this paper.

4 Lili Tan

3.2 Requirements

Requirements were rather liberal, in order to encour-
age participation. All WCET research groups or com-
panies were allowed to participate in the Challenge [32].
All research prototypes or commercial products were al-
lowed to be enrolled. Any tools using static analysis or
measurement-based approaches as well as hybrid meth-
ods were welcome to participate.

No limitation on either the target processor or the
compiler was imposed. Since a consensus on a single tar-
get processor was not to be expected, suggestions were
made in the Announcement [32] with an effort to make
the Challenge test results comparable. The suggested
target processors range from simple processors (e.g., Re-
nesas H8), to processors like the ARM7/9, C167, NEC
V850E, and also includes very complex processors like
the PowerPC 565.

Participants were allowed to submit variants of their
tools for multiple target processors so that it was more
likely to find common target processors supported by
different participants, in order to make the test compa-
rable.

Participants were free to use their compiler of choice
and provide the resulting executable files to the test per-
son. This was done to avoid licence problems and to ad-
mit tools that rely on information from a special com-
piler.

3.3 Benchmark Selection

Three suites of publicly available real-time benchmarks,
the Mälardalen WCET benchmarks [19], PapaBench [22]
benchmarks, and MiBench benchmarks, were originally
proposed. A few days before the on-site tests, two of
them were selected and announced to tool providers by
the Challenge Working Group: The Mälardalen WCET
benchmarks and PapaBench benchmarks. Some modi-
fications were necessary to remove hardware-dependent
code within PapaBench. The Working Group made the
modified version available to all participants for the Chal-
lenge test. MiBench was not considered because it uses
dynamic memory allocation, which is not suitable for
safety-critical application.

3.4 The Three-Round Test Procedure

To assess the automation features and precision of tools,
the test was run in a three-round fashion: without man-
ual annotation, with minimal set of annotations, and fi-
nally with an optimal set of annotations to improve the
WCET quality to the best level [32].

1. In the first round, no manual annotation was used to
assess the capability of each tool to solve benchmarks
automatically.

2. Some tools failed in the first round on certain bench-
marks. In the second round, we began with a mini-
mum amount of annotations, which made the tools
run without claim for tightness. Such annotations in-
clude the loop bounds and iteration depth of recur-
sions that a program required. We investigated the
effects of adding more and more program constraints
in annotations on precision and analyzability.

3. In the final-round, we fine-tuned the annotations to
obtain optimal tightness, with support by the tool
developers.

4 Participating Tools

Five WCET tool providers registered their tools for both
the self-evaluation and the external test. We briefly de-
scribe the participating tools in the order of their regis-
tration.

4.1 aiT

aiT WCET Analyzer (aiT) is a software product of the
company AbsInt Angewandte Informatik GmbH, Ger-
many [1]. The technology used in aiT was initially devel-
oped at Saarland University [35]. Since 1998, AbsInt and
Saarland University have been developing aiT jointly.
The following AbsInt tools took part in the Challenge:
– aiT for Infineon C16X and the Altium Tasking com-

piler (version V8.5r1) [2]
– aiT for ARM7 (TMS470) and the Texas Instruments

TI compiler (version v2.17) [29]
– aiT for PowerPC MPC565 and the WindRiver Diab

compiler (version v5.3) [31]
We give a short description of the microarchitectures of
these target processors:
– The Infineon C16x [17] is a family of 16-bit RISC

micro-controllers with a classical four-stage pipeline
(Fetch, Decode, Execute and Writeback). It has no
floating-point unit. It features an on-chip flash mem-
ory to store the program. The C167 features a CAN-
Bus controller which makes it suitable for the auto-
motive domain.

– The TI TMS470 (ARM7TDMI core) [29] is an im-
plementation of the 32-bit RISC ARM7DMI archi-
tecture. ARM7TDMI has a three-state pipeline and
is the current low-end model of the ARM family. It
is used as a component in system-on-chip solutions
for mobile phones and portable communication and
multimedia devices.

– The MPC565 [10] is a 32-bit PowerPC embedded
microprocessor typically clocked between 40 and 66
MHz and deployed in automotive applications for en-
gine and transmission control. It has an integrated
floating point unit and one megabyte of FLASH mem-
ory on a single chip.

The Worst-Case Execution Time Tool Challenge 2006 5

Table 1 Participating WCET Tools, Supported Target Processors and Compilers

Nr Tool Name Processor Compiler Affiliation

1 aiT Infineon C16x Tasking v8.5 AbsInt Angewandte Informatik GmbH, Germany
2 aiT ARM7 TMS470 TI v2.17 AbsInt Angewandte Informatik GmbH, Germany
3 aiT PPC MPC565 Diab v5.3.1.0 AbsInt Angewandte Informatik GmbH, Germany
4 Bound-T Renesas H8/300 GCC, IAR Tidorum Ltd., Finland
5 Bound-T SPARC ERC32 GCC-based BCC Tidorum Ltd., Finland
6 MTime Motorola HCS12 COSMIC TU-Vienna, Vienna, Austria
7 SWEET ARM9 CtoNIC Mälardalen University, Väster̊as, Sweden
8 Chronos SimpleScalar * GCC National University of Singapore, Singapore

PPC = PowerPC.
* = SimpleScalar is a processor simulator [25]

Among the target processors supported by aiT , MPC565
is a very complex processor, according to the classifica-
tion defined in the Challenge.

4.2 Bound-T

Bound-T is a software product of the company Tidorum
Ltd. in Finland [5]. The following Tidorum tools partic-
ipated:

– Bound-T for Renesas H8/300 and the GNU GCC C
compiler [12] and IAR compiler [16], respectively

– Bound-T for SPARC/ERC32 and the Bare C Cross
(BCC) compiler [11]

Here is a short description of the target processors:
The H8/300 is an 8-bit /16-bit micro-controller[14].

It is a simple processor which is not pipelined. It has no
hardware floating point unit. Therefore, floating point
calculations are implemented in software. Application
domains of the H8 core include real-time control appli-
cations for automotive subsystems and toys.

Several compilers (e.g., IAR, GNU GCC) support the
H8/300.

The SPARC/ERC32 is an implementation of SPARC
V7 [26] processor. It is a 32-bit RISC processor. It has
three devices; the integer unit (IU), the floating-point
unit (FPU), and the memory controller (MEC). The
SPARC/ERC32 has no cache. It is a radiation tolerant
processor developed for space applications.

Derived from the GNUGCC compiler, the BCCcom-
piler has been adapted to the SPARC/ERC32 target by
Gaisler Research.

4.3 SWEET

The SWEdish Execution time Tool (SWEET) is a re-
search prototype developed at Mälardalen University [28].
SWEET supports the target processor ARM9 core [3] us-
ing the CtoNIC compiler [43].

The ARM9 core is an integer-only processor core. It
has a 32-bit RISC CPU architecture featuring a five-
stage pipeline. It has a Harvard memory architecture.

There are separate buses for instructions and data. The
clock speeds of the ARM9 cores are configurable. The
ARM9 can be equipped with separate instruction and
data caches. However, SWEET does not model cache be-
havior. It assumes a perfect memory system with single-
cycle access to instructions and data [34]. The ARM9
core is used in mobile phones, routers, and other com-
munication devices.

The CtoNIC compiler is a research prototype. In or-
der to carry out the WCET analyses, SWEET depends
on the intermediate code produced by CtoNIC.

4.4 MTime

MTime is a research prototype from the Real-Time Sys-
tems Group at Vienna University of Technology (TU-
Vienna) [42] and [41]. MTime supports the processor
Motorola HCS12 [15] with the COSMIC compiler [8].
We skip a detailed introduction about the target proces-
sor and compiler due to reasons stated in the Section 6.
Still, for completeness, we take account of all registered
tools that entered the Challenge.

4.5 Chronos

Chronos is a research prototype developed under GNU
GPL license at the National University of Singapore. The
underlying techniques of Chronos are described in [7].

Chronos is designed for SimpleScalar and the GCC
compiler [12]. SimpleScalar is a research simulator suite
for superscalar processors [25]. It implements a MIPS
[21] instruction set and admits customization of several
hardware parameters. The Chronos tool makes simplify-
ing assumptions, e.g. a memory load operation completes
in a single cycle.

Chronos entered the Challenge with three different
target configurations:

– Simple in-order (SIO), in-order pipeline with perfect
cache and perfect branch prediction

– Complex in-order (CIO), in-order pipeline with cache
modeling and branch prediction

6 Lili Tan

– Complex out-of-order (COO), out-of-order pipeline
with cache modeling and branch prediction

4.6 Summary

We have introduced the five participating tools and the
supporting processors and compilers. Table 1 summa-
rizes the registration data.

Note that the target processors (and compilers) sup-
ported by the participating tools vary from each other.
This has an impact on the comparability of the obtained
results:

– impact of the target processor
– The same executable has a different timing be-

havior on different target processor. Therefore the
absolute numbers of the obtained WCET values
are not comparable.

– Beside obvious differences imposed by the instruc-
tion set, a different target processor may even lead
to different control flow. As an example, consider
functionality like certain floating point computa-
tions (e.g. square root, sine or cosine). If the pro-
cessor does not provide a hardware floating point
unit, such a computation is realized as a library
function whose timing behavior is harder to ana-
lyze than an instruction realized in hardware.

– impact of the compiler
– On the same target processor, different compilers

or using the same compiler with other options typ-
ically leads to a different executable. Optimiza-
tion options often affect control flow in connec-
tion with loops (such as loop unrolling and soft-
ware pipelining) and conditionals (code motion
and duplication). This may have an effect on loop
bounds, infeasible paths and analyzability in some
cases, although, at a coarse-grain level, control
flow is preserved.
Since the considered WCET tools are run on dif-
ferent executables (see Tables 4, 5, 6, 7), one has
to be careful when comparing loop bounds and
infeasible paths discovered by different tools.

– Differing executables also make the absolute val-
ues of WCET obtained by tools running on dif-
ferent executables incomparable.

Although absolute WCET values are incomparable, de-
gree of automation, support for certain language con-
structs and amount of overestimation (which is a relative
value) are comparable.

5 The Benchmark Program Features

We introduce the selected benchmarks and discuss their
features in language constructs, which are designed to
evaluate WCET approaches and tools.

5.1 Mälardalen WCET Benchmarks

The Mälardalen WCET benchmarks are a collection of
C programs from different sources:

– Programs developed at Mälardalen University (MDH)
– SPEC95 [27]
– Seoul National University Real-Time Research Group

(SNU-RT) [38]
– C-Lab, Paderborn [6]

The benchmarks are maintained at Mälardalen Univer-
sity and were originally used to validate SWEET.

The MDH benchmark programs are synthetic, inten-
tionally hard, test cases for flow analysis, e.g.,

– cnt: Count non-negative numbers, contains nested
loops

– cover: Loop containing many switches
– duff: Duff’s device jargon file copy, contains jump

into loop body
– edn: JPEG compression, contains bit shift operation
– janne complex: Nested loops, contain many infeasi-

ble paths
– malmult: Matrix multiplication, contains nested for-

loops
– ndes: Complex embedded code, contains counted loop

and bit operations
– ns: Search in a multi-dimensional array, deeply-nested

loop
– recursion: Recursive Fibonacci function

Benchmark program compress was taken from SPEC95.
It is a hand-coded program for data compression, con-
taining bit operations and loops for shifting.

Benchmarks originally from SNU-RT are hand-coded
algorithms from real-time applications:

– adpcm: Adaptive Differential Pulse Code Modulation,
contains variable multiplication in loop range expres-
sion

– crc: Cyclic redundancy check, contains loop bounds
depending on function arguments

– insertsort: Insertion sort, contains a nested loop with
a complex dependence between iteration variables

The C-Lab Benchmarks are automatically generated pro-
grams from the embedded real-time domain:

– nsichneu: Simulates an extended Petri net, state tran-
sitions realized using if-statements

– statemate: Car window lift control generated from
a Statechart [37], state transitions realized by switch
statements

Each of the 15 selected Mälardalen WCET benchmarks
consists of one single source file. We have summarized
some properties of the benchmark programs in Table 21.

1 The table extends the table from Mälardalen WCET
benchmarks [19] with information about language constructs
for each program.

The Worst-Case Execution Time Tool Challenge 2006 7

Table 2 Benchmarks: Description, Source Code Size, and Features

Nr. Benchmarks Description Source Type Size Size L N A B R U
(LOC) (KB)

1 adpcm ADPCM Signal-processing SNU-RT H 879 27 L A B U
2 cnt Count non-negative numbers MDH H 267 4 L N A
3 compress Data compression SPEC95 H 508 13 L N A B
4 cover Test many paths MDH H 240 7 L
5 crc CRC computation SNU-RT H 128 6 L A B
6 duff Duff’s Device MDH H 86 3 L A U
7 edn DCT JPEG compression MDH H 285 11 L N A B
8 insertsorts Insertion sort SNU-RT H 92 5 L N A
9 janne complex Nested loops MDH H 64 2 L N
10 matmult Matrix multiplication MDH H 163 4 L N A
11 ndes Complex embedded code MDH H 231 8 L A B
12 ns Multi-dimensional array MDH H 535 10 L N A U
13 nsichneu Petri-Net Simulation C-Lab S 4253 105 L A
14 recursion Fibonacci recursion MDH H 41 1 R U
15 statemate Car window lift control C-Lab S 1276 42 L A B
16-17 PapaBench Fly-by-wire and IRIT H 2000 269 L A B R U

Package autopilot control

LOC = Lines of source code.
ADPCM = Adaptive Differential Pulse Code Modulation. CRC = Cyclic redundancy check.
DCT = Discrete Cosine Transformation.
SNU-RT = Seoul National University, Real-Time Research Group MDH = Mälardalen University.
S = Synthesized automatically by a code generator. H = Hand-written code.
L = Loops. N = Nested loops. A = Array/Matrices. B = Bit Operation. R = Recursion. U = Unstructured code.

5.2 PapaBench Benchmark Package

Derived from the Paparazzi project [23], the PapaBench
benchmark is developed for a real real-time embedded
application. It is designed to be embedded on different
Unmanned Aerial Vehicles (UAV) for autonomous air-
craft control and fly-by-wire. The software is available
from the IRIT Institute [22].

Tasks in PapaBench are embedded in a real system
with hard timing constrains. WCET bounds are needed
to schedule tasks for two applications:

– autopilot, an autonomous aircraft control based on a
flight plan

– fly-by-wire, servo control and communication with
autopilot

The PapaBench programs use code from different
source files, unlike Mälardalen benchmarks where each
program is contained in a single file. The whole software
package consists of 22 folders and 120 files. Therefore
we summarize all the language constructs for the whole
PapaBench package in Table 2 without separating them
into single files.

5.3 Summary

We have presented the selected benchmarks which range
from academic benchmarks to tasks from hard real-time
applications, which includes both hand-coded algorithms
as well as control-intensive programs created by code
generators of model-based development environments,

e.g. Statemate. The selection includes problems from the
automotive and the aeronautic domain.

6 The Experiments

We aimed at giving each tool a fair share of time spent on
its evaluation. A schedule had been made to visit the tool
developers and to test their tools (see Table 3). Roughly
one week was spent on each tool (including traveling).
The tests were performed starting with aiT and contin-
uing with MTime, Bound-T, SWEET, and Chronos (in
First In First Service order).

We skip MTime because MTime was not able to ana-
lyze function calls at that time. All selected benchmarks
contain function calls. Therefore MTime could not de-
liver results in the Challenge.

The main computer used to install the participating
tools and to run the external tests is a laptop with an
AMD Mobile Sempron TM Processor 2800+ with 1.60
GHz and 448 MB RAM.

Three additional computers were used at the Univer-
sity of Duisburg-Essen for testing Bound-T and Chronos.
These computers have AMD Athlon TM 2500+ CPUs at
1.83 GHz, and 992 MB of RAM. Two ran Windows XP
and one Linux. For Bound-T, the PCs ran in parallel, be-
cause it took over two days for Bound-T to analyze the
benchmark autopilot without annotations. For techni-
cal reasons, the PCs were used to access Chronos via a
remote server in Singapore.

8 Lili Tan

Table 3 Tool-Testing Schedule

Nr. Duration Test Activities Place

0 2006-09-29 Start right after the organizational decision made Essen, Germany
1 2006-10-02 to 06 Test aiT, aiT trip (2006-10-03 to 06) Saarbrücken, Germany
2 2006-10-09 to 13 MTime trip (2006 -10-10 to 13) Vienna, Austria
3 2006-10-16 to 20 Test aiT, Test Bound-T Essen, Germany
4 2006-10-23 to 27 Test Bound-T, Bound-T and SWEET trip (2006-10-24 to 28) Väster̊as, Sweden
5 2006-10-30 to 11-03 Test Chronos, Test Bound-T, Test SWEET Essen, Germany
6 2006-11-06 to 13 Report drafting, Test SWEET Essen, Germany
7 2006-11-14 to 20 ISoLA conference trip, Test report on 2006-11-17 Paphos, Cyprus

Table 4 aiT’s Input Programs: Format and Size (KB)

Nr. Benchmarks aiT aiT aiT
C16X ARM7 MPC565

Tasking TI Diab

Code Format *.abs *.out *.elf

1 adpcm 29 30 19
2 cnt 5 8 7
3 compress 16 17 11
4 cover 15 8 9
5 crc 6 8 7
6 duff 4 7 6
7 edn 15 16 10
8 insertsorts 3 5 6
9 janne complex 4 5 6
10 matmult 5 8 7
11 ndes 14 14 13
12 ns 6 11 11
13 nsichneu 102 73 41
14 recursion 4 6 7
15 statemate 32 33 26
16 fly-by-wire 34 36 31
17 autopilot 121 136 104

We begin the experiments section by describing how
to work with the tools, e.g. which inputs are required,
the input and output formats, and the user interfaces.

6.1 aiT

Input. There are three types of input for aiT:

– A program executable
– A specification file for machine settings and optional

program annotations
– A program entry point (like a main function)

The employed executables were compiled by an aiT de-
veloper and were made available for the external test. We
list the formats and sizes of these executables in Table 4.

As stated in Section 4, we observe that for each tar-
get platform there is an executable format and that, for
a particular program, the size of the executable varies
for the different targets, e.g. the benchmark nsichneu
compiled by the compiler Tasking takes 102 KB in size,
by the compiler Diab 41 KB, although the C source file
is the same.

An aiT specification file includes information about
the settings of the target processor, e.g., clock rate and
properties of memory areas, and program annotations if
required, e.g. loop bounds.

User Interaction. The aiT tool provides a graphical user
interface (GUI) to manage files in a project (the input
program, the specification file and output files), gives
assistance to develop annotations, and presents analysis
results.

User effort is required if loop bounds and recursion
are not detected by the tool automatically. Providing an-
notations to eliminate infeasible paths can improve pre-
cision. aiT provides hints for necessary annotations and
displays the position where the annotation is needed, in
the position of the executable file as well as in the cor-
responding source code line (if source code is available).

Annotations may contain any of the following infor-
mation about a program:

– targets of computed calls and branches,
– loop bounds if not automatically detected by the tool,
– recursion depth,
– code snippets that should not be analyzed,
– infeasible code.

Output. aiT produces report files and a graphical visual-
ization. The report files (in txt and XML format) contain

– timing information: the calculated WCET value for
the program and contributions of different parts of
the program to this total value. Furthermore, calcu-
lated execution time bounds can be mapped back to
the program code by inspecting the visualization.

– program analysis information, including value analy-
sis.

The graphical visualization shows the control flow graph
of the program enriched with timing information and
inspect states of the processor model at desired program
locations.

6.2 Bound-T

Input. There are three types of input for Bound-T:

– A program executable

The Worst-Case Execution Time Tool Challenge 2006 9

Table 5 Bound-T Input Programs: Format and Size (KB)

Nr. Benchmarks Bound-T Bound-T Bound-T
H8/300 H8/300 SPARC

GCC IAR BCC

Code Format *.coff *.iar *.elf

1 adpcm 29 21 107
2 cnt 17 5 92
3 compress 24 12 98
4 cover 19 13 93
5 crc 16 4 92
6 duff 15 4 90
7 edn 24 12 97
8 insertsorts 15 2 90
9 janne complex 15 3 90
10 matmult 17 5 92
11 ndes 23 12 96
12 ns 17 5 95
13 nsichneu 111 84 139
14 recursion 15 3 90
15 statemate 32 28 119
16 fly-by-wire 56 36 108
17 autopilot 320 157 187

– A specification file for program annotations if re-
quired

– A program entry point to start the WCET analysis

There is no need to specify the target machine setting.
Bound-T assumes a fixed machine setting. The executa-
bles were compiled with the respective commercial and
non-commercial compilers by the Bound-T developer,
who made them available for the external test. We list
the formats and sizes of these executables in Table 5. We
notice from the table that the code size of the bench-
marks from BCC compiler is on average greater than
those produced by the other two compilers, except for
benchmark autopilot.

User Interaction. The main work of user interaction for
Bound-T is to develop an annotation file. Bound-T is a
command-line tool. It does not give explicit hints con-
cerning necessary annotations. If the tool gets stuck at
a particular program location, this may be an indication
that an annotation, such as a loop bound, is necessary.
To this end, runtime messages indicate the program lo-
cation currently being processed.

There is no GUI or generic interface to trace back the
appropriate positions in executable and in source files,
where annotations are needed. Users have to do it by
themselves.

Visualization of control flow graph is realized via the
open source software Graphviz [13].

Output. Bound-T produces command-line and graphical
output giving the calculated WCET bounds and some
intermediate results of the benchmarks.

Table 6 SWEET Input Programs: Format and Size (KB)

Nr. Benchmarks SWEET
ARM9

CtoNIC

Code Format *.nic *.tcd

1 adpcm 928 623
2 cnt 70 59
3 compress 302 294
4 cover 723 639
5 crc 132 172
6 duff 110 82
7 edn 547 569
8 insertsorts 35 36
9 janne complex 29 20
10 matmult 74 56
11 ndes 752 346
12 ns 527 37
13 nsichneu 3076 3148
14 recursion 34 23
15 statemate 853 908
16 fly-by-wire N/A N/A
17 autopilot N/A N/A

6.3 SWEET

Input. In addition to an executable, SWEET needs as
input the intermediate code from a specific compiler,
the CtoNIC compiler. The compiler was able to be com-
pile the 15 Mälardalen WCET-benchmarks but failed in
the two PapaBench benchmarks. Mälardalen University
made the compiled 15 Mälardalen WCET-benchmarks
available for the external test. The inputs for SWEET
are summarized in Table 6 (programs that could not be
compiled by CtoNIC are marked with N/A).

User interaction. SWEET comes with multiple analy-
sis engines for control-flow analysis, called modes by the
SWEET developers. Users need to pick an appropriate
mode. Furthermore, one can specify interval ranges in
which the value of a variables lies.

There are four modes available for SWEET:

– Simple path basic mode (SPBM): produce loop bounds
without using interval information for variables

– Simple path advanced mode (SPAM): produce loop
bounds and infeasible paths without using interval
information

– Multi path basic mode (MPBM): produce loop bounds
using interval information

– Multi path advanced mode (MPAM): produce loop
bounds and infeasible paths using interval informa-
tion

The MPBM and MPAM modes are not applicable to all
programs. They only worked for crc, edn, insertsort,
janne complex, ns, and nsichneu of the Mälardalen
WCET-benchmarks in the Challenge.

SWEET is a command-line tool that displays run-
time messages giving calculated results in the Windows

10 Lili Tan

Table 7 Chronos Input Programs for Core WCET Analysis:
Format and Size (KB)

Nr. Benchmarks Chronos
SimpleScalar

GCC

Code Format

1 adpcm 82
2 cnt 68
3 compress 74
4 cover N/A
5 crc 68
6 duff N/A
7 edn 73
8 insertsorts 67
9 janne complex 67
10 matmult 69
11 ndes 73
12 ns 72
13 nsichneu 114
14 recursion N/A
15 statemate 81
16 fly-by-wire 80
17 autopilot 181

N/A = Chronos did not handle the benchmark.

console. There is neither hint for annotations nor for ex-
ecution mode selection.

SWEET’s visualization of control flow graphs is re-
alized via the open source software Graphviz [13], like
Bound-T. It displays hierarchical structures of nested
loops.

Output. SWEET outputs runtime messages in the Win-
dows console, which contain WCET bounds information
that the tool calculates.

6.4 Chronos

Input. The Chronos tool chain starts with C source code.
The SimpleScalar infrastructure comes with a GCC com-
piler. It produces an executable, which Chronos uses
as input to the WCET analysis. We have compiled the
benchmarks using the tool chain. The executables ob-
tained for core WCET analysis of Chronos are summa-
rized in Table 7.

Since Chronos supports three target configurations,
i.e., SIO, CIO, COO. Each of the configuration settings
was set in a file as input. This was necessary for both the
estimated WCETs and the simulated execution times.

User Interaction. Loop bounds, which were not auto-
matically detected by Chronos, were required to be pro-
vided in an annotation file.

There is a Chronos GUI available. However, we used
the command-line interface instead during the Challenge.
Because the response time of the remote access to the
GUI was terrible. Since we had to access CPLEX [9],

a commercial ILP solver in Chronos work-flow for the
Combined Calculation Phase described in Section 2.3.

Output. Outputs of Chronos include WCET results and
statistics on analysis times.

6.5 Summary

We observe that requirements on the compiler, e.g. the
need for a specific form of intermediate code, may com-
plicate the adaption and integration into a development
process.

It would be interesting to inspect the results of the in-
termediate phases. However, some tools are black boxes,
i.e. they do not allow looking into results of the interme-
diate analysis phases. This also precludes a one-to-one
comparison between tools at the level of intermediate
phases such as flow analysis.

Due to the black-box character of some tools, we eval-
uate tools based on ability to analyze programs, level of
automation and precision.

7 Test Results

We present test results from the three-round test proce-
dure in this section. We discuss:

– The ability of WCET tools to analyze benchmarks
automatically

– Human effort in improving WCET analyzability and
tightness of results. We use tool facilities to provide
tools with user annotations, in order to process WCET
analysis and to improve prediction quality.

– The final results with full annotations:
– total numbers of benchmarks analyzed
– the prediction quality by means of WCET tools

outputs vs. measurement

We present our observation and an interpretation in the
summary.

7.1 The First-Round: Test Results without Annotations

Benchmarks Solved Automatically. In the first test round,
we provided each tool with the benchmark programs in
its required formats, without user interaction for anno-
tation of the program features.

The results of the first round are given in Table 8
and in Table 9. We give the WCET in CPU cycles pre-
dicted by the different tools (in column) for the corre-
sponding target processors (in column) and respective
compilers (in column) for each benchmark program (in
row). If a tool could not analyze a benchmark program,
this is indicated by a blank in the table. The absolute
WCET values in the table are incomparable due to dif-
ferent target processors. Nevertheless, we provide these

The Worst-Case Execution Time Tool Challenge 2006 11

Table 8 WCET Values (in cycles) Predicted by Tools Without User Annotations

Nr. Benchmarks aiT aiT aiT Bound-T Bound-T Bound-T
C16X ARM7 MPC565 H8/300 H8/300 SPARC

Tasking TI Diab GCC IAR BCC

1 adpcm
2 cnt 32812 26572 7576 45806 78982
3 compress
4 cover 19459 6780 5451 10250 180
5 crc 107278 164118 268657
6 duff
7 edn 307889 104907
8 insertsorts
9 janne complex
10 matmult 1562815 523599 237736 1506520 3282132
11 ndes 816337 194448 1944845 712454 4214
12 ns 238414 38043 34361 20976 256960 7097
13 nsichneu 41678 21362
14 recursion
15 statemate
16 fly-by-wire test ppm task 9875 1242

fly-by-wire send data to autopilot task 3197 331
fly-by-wire check mega128 values task 4092 437
fly-by-wire servo transmit 2390 1909 1249
fly-by-wire check failsafe task 4058 432

17 autopilot radio control task 15972 2247
autopilot stabilisation task 4239 340
autopilot link fbw send 170 144 81
autopilot receive gps data tasks
autopilot navigation task
autopilot altitude control task 915 95
autopilot climb control task 4129 247
autopilot reporting task 8286 11172 4464

1-17 Analyzed automatically 8 18 19 4 6 3

values, because they indicate how much precision was
gained by annotation. We concentrate on the number of
benchmarks and tasks each tool solved (the last line in
the table), which indicates the degree of automation of
a tool.

The benchmarks have different levels:

– All tools succeeded in automatically analyzing pro-
grams cnt and matmult. Program cnt counts non-
negative entries in a matrix. It contains nested loops
where loop bounds are easy to determine and consists
only of well-structured code. The program matmult
is matrix multiplication for 20x20 matrices and per-
forms multiple calls to the same function. It contains
nested function calls and triply-nested loops.

– Many tools could automatically handle cover, crc,
edn, ndes, ns and nsichneu. It seems impossible to
attribute this to any particular coding style or lan-
guage construct.

– Among the harder cases are the following programs
because of difficult control flow, namely, adpcm, com-
press, insertsort, janne complex, and Duff’s de-
vice duff. Program duff is a test case for unstruc-
tured code, adpcm is a milder form of unstructured
code. Programs janne complex and insertsort are
difficult because they contain a nested loop, where

the inner condition depends on the outer loop vari-
able.

– Because only aiT (with annotated recursion depth)
and SWEET support recursion, these tools were the
only ones which could analyze program recursion.

– PapaBench is a special case because only aiT could
analyze automatically large parts of it (all but two).
In particular, loop bounds of for-loops were discov-
ered automatically. aiT required annotations of loop
bounds for while-loops and loops from the floating-
point library.

Above, we have taken a benchmark-oriented view (lines
in Table 8 and Table 9), i.e. we have grouped together
benchmarks according to how well the tools perform on
them. We proceed by focusing on the tools (columns in
Table 8 and Table 9) and provide specific detail for each
tool:

– The aiT tools excelled on the application-oriented
real-time control programs of PapaBench. This seems
to be due to aiT’s use of abstract interpretation which
scales well on large programs while some others tools
timed out.
Since the C16X target machine does not support float-
ing point operations in hardware, these functions have
to be implemented in software. These algorithms com-

12 Lili Tan

Table 9 WCET Values (in Cycles) Predicted by Tools Without User Annotations

Nr. Benchmarks SWEET Chronos Chronos Chronos
ARM9 SimpleScalar SimpleScalar SimpleScalar

CtoNIC GCC GCC GCC
(SPBM/SPAM) (SIO) (CIO) (COO)

1 adpcm 2165650 / 2162122
2 cnt 36719 / 35319 4896 6438 5401
3 compress 206480 / 49896
4 cover 73128 / 63563
5 crc 834159 / 830278
6 duff 5525 / 4720
7 edn 1425085 / 1425085 89401 113612 89030
8 insertsorts 31163 / 18167
9 janne complex 12039 / 2523 189 800 789
10 matmult 2532706 / 2532706 186903 191615 119526
11 ndes 795425 / 795425
12 ns 130733 / 130631
13 nsichneu 119707 / *
14 recursion 29079 / 20033
15 statemate 15964 / 8451
16 fly-by-wire test ppm task

fly-by-wire send data to autopilot task
fly-by-wire check mega128 values task
fly-by-wire servo transmit
fly-by-wire check failsafe task

17 autopilot radio control task
autopilot stabilisation task
autopilot link fbw send
autopilot receive gps data task
autopilot navigation task
autopilot altitude control task
autopilot climb control task
autopilot reporting task

1-17 Analyzed automatically 15 4 4 4

* = Memory exhausted in the test laptop.
SPBM = Single path basic mode. SPAM = Single path advanced mode.
SIO = Simple in order. CIO = Complex in-order. COO = Complex out-of-order.

pute approximations up to a particular precision and
thus have complex termination criteria which require
annotation because static analysis is unable to ac-
complish this automatically.

– SWEET was the only tool that solved all Mälardalen
benchmarks automatically. However, it was unable
to analyze the PapaBench examples. SWEET does
not have a single generic engine, it rather has spe-
cialized modes for particular program constructs. In
the table, we therefore list results for the two most
appropriate modes.

– Chronos and SWEET were the only tools to auto-
matically analyze janne complex.

aiT and Bound-T entered the Challenge with more
than one target processor. We observe that the target
processor made a difference in terms of whether or not
a program could be analyzed automatically, e.g. aiT for
MPC565 and aiT for ARM7 were able to solve bench-
marks more than aiT for C16x. This is because both
the MPC565 and ARM7 are register-oriented processors
whereas the C16x is a stack-based processor. In a stack-
based architecture, local variables of functions are on the

stack rather than in registers. Therefore, value analysis
for a stack-based architecture needs to resolve dynamic
memory addresses of stack variables, which makes value
analysis harder than for a register-oriented architecture.

Bound-T for SPARC/ERC32 solved less benchmarks
than Bound-T for the other two targets.

In the first round, some tools solved certain bench-
marks automatically. In the next round, we tried to an-
alyze the remaining benchmarks by providing the tools
with manual annotations.

7.2 The Second-Round: Annotations and Effects

We make the following observations:

– In cases where benchmarks were not solved automat-
ically, annotations were required for analyzability,

– In cases where benchmarks were not solved automat-
ically, annotations improved test results,

– In some cases where annotations were allowed, cer-
tain tools could still not analyze all benchmarks.

The Worst-Case Execution Time Tool Challenge 2006 13

The subsection is structured according to these different
cases.

Annotations Improving Analyzability. What follows is a
detailed description of the annotations that were required
for successful analysis:

Some of the PapaBench programs ,e.g., autopilot
require normalization of angles modulo of 360 degrees
which involves floating point arithmetic and comparison
of floating point values in a loop condition. These pro-
grams could be analyzed after providing manual loop
bounds (see Table 10).

Loops and nested loops with dependencies between
inner and outer iteration variables could be handled with
manual annotation e.g., for benchmarks compress, edn,
insertsort, and janne complex. To recall this, SWEET
detected these automatically for the Mälardalen bench-
marks.

aiT was able to analyze the recursive program with
help of annotation for the numbers of the recursive iter-
ations.

Annotations Improving Tightness. aiT was able to pro-
vide some hints about loop bounds in its GUI. Using
these messages for annotations improved the tightness
of results. Additionally, specifying infeasible paths and
memory access areas, further improved tightness.

SWEET uses different program modes to eliminate
infeasible paths and reduce overestimation. By speci-
fying variable ranges in case of benchmarks crc, edn,
insertsort, janne complex, ns, and nsichneu, the pre-
cision of SWEET was improved.

SWEET, Bound-T and Chronos did not give hints in
terms of annotations for better tightness.

Even Annotations Do Not Help. There are general lim-
itations in some tools. Because of the limitations, some
tools could not analyze some benchmarks even with an-
notation:

Bound-T was still not able to handle a loop with
multiple entry points, (such as in duff) and recursion
(as in recursion). It was not able to analyze the nested
loops in janne complex despite allowance for annota-
tion. Bound-T bailed out on benchmark statemate with
an exception.

The compiler framework on which SWEET relies, the
CtoNIC, was not able to compile two of the PapaBench-
Benchmarks. As a result, no further analysis was possible
for SWEET.

Chronos was not able to analyze the benchmarks 2

cover, duff, recursion and autopilot.
As a result, by providing annotation, the numbers

of the benchmarks successfully analyzed increased and
tightness improved generally. We report these quantita-
tive results in the next section.

2 A release of Chronos submitted after the Challenge suc-
ceeded on the cover and the duff benchmark.

7.3 Final: Test Results with Annotations

We count the total effects on the final results:

1. under the aspect of quantity, the number of analyz-
able test programs increased;

2. under the aspect of quality, the execution time bounds
became tighter.

This subsection is structured as follows:

– Total benchmarks analyzed in the end results
– Precision by means of calculated WCET vs. measure-

ments

Total Benchmarks Analyzed. Table 10 summarizes the
number of analyzed cases with the help of annotation
and gives the causes of failed analysis. In a nutshell,
the total numbers of programs analyzed rose to 100%,
which was achieved by aiT for all Mälardalen WCET-
Benchmarks and PapaBench-Benchmarks. Bound-T suc-
ceeded with the PapaBench-Benchmarks, while the re-
search tool SWEET was good at handling Mälardalen
WCET-Benchmarks.

Now we explain problems encountered.

– Compilation problem: Some benchmarks could not be
compiled. Therefore, no input was available for the
WCET analysis. This applied to the CToNic com-
piler for SWEET in analyzing the PapaBench bench-
mark programs. The other WCET tools, which ana-
lyze code compiled by common GCC or commercial
compilers, are not necessary to be restricted by the
same problem.

– Analysis problem: This applied to the benchmark
programs that could be compiled but could not be an-
alyzed. Usually it is because of the limitation in tools
and approaches. Some tools were not able to handle
some language constructs. The challenging language
construct include unstructured code. Recursion (as
in recursion) was not supported by Bound-T nor by
Chronos. The Omega Calculator [39], which Bound-T
uses for loop bound calculation , was not able to anal-
ysis nested loops in the benchmark janne complex
and statemate.

For completeness, we report on minor problems such as
resource limitations of the test machine and other tech-
nical problems:

– On MS Windows XP, there were compatibility issues
with the Omega Calculator. This affects BOUND-T.

– Due to limited memory of the machine, aiT for ARM7
ran out of RAM on matmult in the third round. The
same happened for SWEET on nsichneu. No such
problems had been encountered on a larger computer
reported by [36].

After annotation, aiT analyzed all benchmarks in all
categories and SWEET analyzed all Mälardalen bench-
marks. Bound-T and Chronos do not solve the MDH,

14 Lili Tan

Table 10 Total Benchmarks Analyzed and Problems Encountered

Nr. Benchmarks aiT Bound-T SWEET Chronos

1 adpcm
2 cnt
3 compress
4 cover f
5 crc
6 duff f f
7 edn e
8 insertsorts
9 janne complex f
10 matmult a
11 ndes
12 ns
13 nsichneu e a
14 recursion f f
15 statemate f
16 fly-by-wire f
17 autopilot f f

Analyzed
1-17 total (#) 17 13 15 13
1-17 ratio (%) 100% 76.5% 88.2% 76.5%

f = Fatal error. The tool does not handle these problems with
the release at that time.

e = Error. Microsoft Windows informed that the Omega Cal-
culator had a conflict with Microsoft Windows System.

a = Memory exhausted: aiT for ARM7 on the test laptop,
and SWEET in single-path advanced mode.

= Numbers of the analyzed benchmarks.
% = Percent.

SNU-RT, and C-Lab benchmarks completely. This is due
to unsupported language constructs such as recursion,
and in other cases because switch tables could not be re-
constructed. This is because Bound-T and Chronos were
unable to resolve indirect jumps in switch tables. The
value analysis used in aiT was precise enough to resolve
these addresses. Chronos did not implement a value anal-
ysis.

WCET Prediction vs. Measurement. In order to examine
the correctness and precession of the computed WCET
upper bounds by static analysis tools, we compared them
to the tentative worst-case execution times observed by
measurement. We would like to point out that the actual
WCET of a program is often unknown. In general, it
lies above the measured execution time and below the
computed WCET estimate. Therefore, by comparison of
the prediction and measurement values, we get an upper
bound on the overestimation produced by a tool, since
the difference between computed WCET estimate and
measured execution time is greater that or equal to the
difference between actual WCET and measurement.

Measurement were conducted for aiT and Chronos.
For aiT, the execution times were measured on real hard-
ware using a logic analyzer. Some programs did not fit
into the trace memory of the logic analyzer. This is in-
dicated by buffer in the table. For Chronos, the Sim-

pleScalar simulator has been used. Here N/A indicates
that Chronos could not analyze the program. PapaBench
could not be executed due to hardware dependency. For
the other participating tools, no reference values were
available.

Table 11 gives the WCET values calculated by aiT
and Chronos with annotations. Measured execution times
are given in Table 12. The tightness with respect to these
reference values is given in Table 13.

Precision in tightness of the analyzed results from
aiT for ARM7 was 1.47%, for C16x 8.82%, for MPC565
12.6%. aiT obtained tighter results for the simpler target
processor than for the more complex one.

The target for Chronos is the SimpleScalar processor
simulator. The tightness for the simple in-order pipeline
was 33.69%, for complex in-order pipeline it was 80,52%,
and for complex out-of-order pipeline 131,54%. Chronos
obtained tighter results for the simpler hardware config-
uration than the more complicated one: the difference
may vary largely by up to a factor of four.

Here, the complexity of the target architecture influ-
enced the precision of a tool.

Also, the overestimation for both tools was program-
dependent, e.g., for benchmark compress, we observed
a higher overestimation than for the other benchmark
programs. This program contains bit-operations, many
conditions, and loops for shifting.

The Worst-Case Execution Time Tool Challenge 2006 15

Table 11 WCET Values (in Cycles) Predicted by Tools With Optimal Annotations

Nr. Benchmarks aiT aiT aiT Chronos Chronos Chronos
C16x ARM7 MPC565 SimpleScalar (SIO) SimpleScalar (CIO) SimpleScalar (COO)

1 adpcm 558342 1375886 430274 265588 347742 317354
2 cnt 20250 17053 7376 4896 6438 5401
3 compress 37570 20280 9461 5873 29215 28487
4 cover 10452 6780 5006 f f f
5 crc 275910 213337 98830 47786 61849 53275
6 duff 7196 4612 1355 f f f
7 edn 927068 307889 88381 89401 113612 89030
8 insertsorts 4870 3992 1838 901 1549 1245
9 janne complex 1330 829 383 189 800 789
10 matmult 956710 a 237736 186903 191615 119526
11 ndes 453348 194448 130025 66655 107589 85918
12 ns 75712 38043 18215 8199 9991 8676
13 nsichneu 29840 18827 8327 13609 97908 97525
14 recursion 10076 7451 5527 f f f
15 statemate 2620 3812 1294 2007 16185 16103

f = Fatal error. The tool does not handle this problems with the release at that time.
a = Memory exhausted in the test laptop.

Table 12 Measured and Simulated Execution Times

Nr. Benchmarks aiT aiT aiT Chronos Chronos Chronos
C16x ARM7 MPC565 SimpleScalar (SIO) SimpleScalar (CIO) SimpleScalar (COO)

1 adpcm buffer buffer buffer 160891 183526 126258
2 cnt 19622 16853 7235 4792 5586 3515
3 compress 27308 19970 6824 5859 7504 4744
4 cover 10080 6778 4299 N/A N/A N/A
5 crc buffer buffer buffer 22688 26861 18098
6 duff 6919 4610 1028 N/A N/A N/A
7 edn 838686 299734 buffer 87444 108973 62995
8 insertsorts 4720 3990 1770 897 1364 949
9 janne complex 1294 827 359 185 454 356
10 matmult 936602 438435 buffer 186899 185937 90834
11 ndes 401294 190530 buffer 65600 86639 53625
12 ns 73738 36097 buffer 6577 7568 4784
13 nsichneu 28328 18825 8052 6305 42966 40931
14 recursion 8318 7143 5096 N/A N/A N/A
15 statemate 2486 3810 1260 1120 6207 5898

N/A = Not applicable.
buffer = Because of the buffer limitation in the test board, it is not possible to measure the WCETs.

Furthermore, we observed that:

– The synthesized code from C-Lab, the car window lift
control (statemate) and the Petri-Net (nsichneu),
contains mainly control structure: switch statements,
conditionals, both deeply nested. In executables, large
switch statements may lead to indirect jumps that
use registers to reference contents of switch tables.
Resolving these jumps precisely requires knowledge
about register contents, as provided by value analysis.
Here aiT’s value analysis helps resolve these jumps,
and discover infeasible paths, which is the reason why
aiT’s tightness is better on these benchmarks.

– Chronos did not implement value analysis therefore
its overapproximation on these two benchmarks is
higher than average.

8 Discussion

We summarize the main findings of the paper.

8.1 Tool Assessment with respect to Industrial
Requirements

Consisting of commercial and research prototypes from
five different countries, the participating WCET tools
represent the state of the art in the domain. This allows
us to evaluate the Challenge results and in this way draw
a picture of the state of the art in WCET, from the
perspective of industrial expectations.

Tool Support. Fundamentally, a WCET tool has to sup-
port the target platform and the program to be analyzed,
possibly aided by human effort.

16 Lili Tan

Table 13 WCET Tightness: Prediction vs. Measurement

Nr. Benchmarks aiT aiT aiT Chronos Chronos Chronos
C16x ARM7 MPC565 SimpleScalar (SIO) SimpleScalar (CIO) SimpleScalar (COO)

1 adpcm N/A N/A N/A 65.07% 89.48% 151.35%
2 cnt 3.2 % 1.19% 1.95% 2.17% 15.25% 53.66%
3 compress 37.58% 1.55% 38.64% 0.24% 289.33% 500.48%
4 cover 3.69% 0.03% 16.45% N/A N/A N/A
5 crc N/A N/A N/A 110.62% 130.26% 194.37%
6 duff 4.05% 0.04% 31.81% N/A N/A N/A
7 edn 10.54% 2.72% N/A 2.24% 4.26% 41.33%
8 insertsorts 3.18% 0.05% 3.84% 0.45% 13.56% 31.19%
9 janne complex 2.7% 0.24% 6.69% 2.16% 76.21% 121.63%
10 matmult 2.15% N/A N/A 0.0% 3.05% 31.59%
11 ndes 12.97% 2.06% N/A 1.61% 24.18% 60.22%
12 ns 2.68% 5.39% N/A 24.66% 32.02% 81.35%
13 nsichneu 5.34% 0.01% 3.42% 115.84% 127.87% 138.27%
14 recursion 21.13% 4.31% 8.46% N/A N/A N/A
15 statemate 5.39% 0.05% 2.7% 79.2% 160.75% 132.02%

1-15 Average 8.8% 1.5% 12.7% 33.7% 80.5% 131.5%

N/A = Not applicable.

The target processors the PowerPC, ARM (ARM7 /
ARM9), and C16X are the top three popular processors
in industry, according to a survey in 2004 on industrial
requirements [44].

The benchmark selection covers tasks from both the
automotive and the avionics domain with hard timing
constraints, in this way, testing scalability and applica-
bility to real-life code. Academic benchmarks provide ex-
treme test cases in terms of determination of loop bounds
and infeasible paths. The benchmarks also represent dif-
ferent coding styles ranging from code automatically gen-
erated from models to hand-written code.

All benchmark programs could be analyzed, albeit
some required annotation. However, not all tools can
solve all benchmarks. In general, coding style and lan-
guage constructs have a strong influence on analyzability
of the program, and required human effort. For instance,
using for-loops instead of while-loops makes the detec-
tion of loop bounds easier for WCET tools.

Certain types of control flow such as “unstructured
code” were not supported by Bound-T and Chronos. aiT
and SWEET could obtain control flow automatically.
This was difficult for Bound-T and Chronos. SWEET
is a special case because it extracts information from the
source code unlike the other tools.

While many loop bounds could be detected auto-
matically, certain types of loop conditions and nesting
were difficult. More precisely, the following types of loop
conditions caused trouble: loop conditions depending on
complex boolean operations, which may happen in model-
based code as, e.g., generated by Statemate, or loop con-
ditions that use a comparison of floating point numbers,
e.g. in numerical computations. Nested loops with com-
plex dependencies between iteration variables are hard
in general.

In terms of loop bounds, aiT only required annota-
tions in case of the complex loop conditions and nesting
mentioned above; all other bounds were detected auto-
matically.

SWEET could analyze all of its own benchmark pro-
grams automatically, i.e., annotations were only used to
improve tightness. However, SWEET failed on the other
benchmarks because its special compiler could not pro-
duce the intermediate code needed by SWEET.

Concerning Bound-T, some difficulties in control-flow
reconstruction could be resolved by annotation, except
for the unsupported types of control flow. Loop bound
detection was less automatic than in case of aiT and
SWEET. It posed the largest challenge for Bound-T,
causing high analysis times and timeouts.

Chronos had problems with control-flow reconstruc-
tion. Loop bound detection, in general, required more
annotations than aiT. However, Chronos exclusively suc-
ceeded together with SWEET in janne complex.

Correctness and Precision. We conducted measurements
to assess the correctness and precision of static timing
analysis results from aiT and Chronos. The tools always
produced a WCET value above the measured execution
times, i.e. no obvious bugs were revealed. By comparison
of the WCET analysis results with and without annota-
tions, we observed that, annotations improved the pre-
cision of WCET results. Furthermore by comparison of
the WCET analysis results with annotations to the ob-
served measured execution time, we observed that, the
overestimation averaged over all benchmarks in case of
aiT was in the range of 1.5% - 12.7% for the different
targets, and for Chronos 33.7% - 131.5%.

The Worst-Case Execution Time Tool Challenge 2006 17

Usability Assessment. We wanted to compare the pay-off
of invested effort in terms analysis success and precision.
We allocated an approximately equal amount of time and
effort on each tool.

Properties of the analysis engine immediately affect
usability, such as the degree of automation. In this con-
text, degree of automation, support for certain language
constructs, usability of tools, and precision of computed
WCET bounds are important evaluation criteria. A one-
click solution is always desirable, however none of the
tools achieves this in all cases. In this paragraph, we fo-
cus on the human effort needed to achieve reasonable
results and the assistance from tools in achieving this
goal. In case user effort is required to improve analysis
results, the user should receive assistance from the tool in
providing necessary annotations. aiT points to program
locations in the source code where annotations such as
loop bounds are necessary, and it warns if program an-
notations seem unreasonable.

Our experience is that a unified GUI for project man-
agement, as present in aiT, avoids switching software in-
terfaces and saves time and effort.

Integration requirements. Integration into a software de-
velopment process requires that the tool supports the
employed compiler. All tools except for SWEET3 only
need the executable and not the source code of a pro-
gram. This is useful, since, in industry, source code is
not always available for WCET analysis.

It is desirable that the output format follow a stan-
dard like XML to make processing by scheduling tools
easier, as is done by aiT.

Analysis time. We give some information about analysis
time, although this was not a central point in the test.
For the benchmarks, we observe that most tools ran in
tolerable time. aiT and SWEET took a few second to
analyze each of the benchmark programs, even without
manual annotations. Results for Chronos were obtained
with the commercial ILP solver CPLEX, all other tools
used the academic ILP solver lp solve [33]. Chronos
running time with CPLEX was a few seconds. In some
cases, Bound-T timed out if no annotation was given.

8.2 Achievements and Limitations

Achievements. To our knowledge, this is the first work
in which the major WCET tools have been evaluated by
an independent party.

Publications typically focus on novel analysis tech-
niques. In the Challenge, tools could excel by solving
small, but hard benchmark programs. On the other hand,

3 On the other hand, SWEET explores what is possible
with source-code-based analysis and showed promising results
in automatic flow analysis.

to be useful in the large, some investment into infras-
tructure is needed. Often, this work by itself does not
yield publishable results. Our tool comparison encour-
ages both such effort and novel analysis techniques.

In the course of the evaluation, we discovered bugs,
some of which led to wrong results. These bugs were
reported to tool developers and were subsequently fixed.

Limitations. The submitted tools perform WCET anal-
ysis for different target processors. As a consequence,
different compilers and thus different executables were
analyzed by the respective tools. Hence it is not possible
to compare the absolute WCET values.

It would be interesting to compare different approa-
ches in the two analysis phases of WCET tools, i.e.,
the program analysis and the microarchitectural anal-
ysis. These are however implemented in different tools
and intermediate results are not always accessible.

9 Conclusion

The entered tools have shown their strengths in different
aspects of WCET analysis: Both commercial tools aiT
and Bound-T were able to handle the two fly-by-wire
PapaBench test programs. SWEET automatically ana-
lyzed 88% of the benchmark test programs. The analysis
time of Chronos was very short when using CPLEX. aiT
was able to handle every kind of benchmark and every
test program that was tested in the Challenge. aiT is
able to support WCET analysis even for complex pro-
cessors. aiT provided a user-friendly WCET analysis en-
vironment. aiT was able to demonstrate the precision of
their WCET analysis results. aiT demonstrates its lead-
ing position through all its features, which contributes
to its position as an industry-strength tool satisfying the
requirements from industry as posed by EADS Airbus
and proven by the accomplishment in various projects.

The external test trips gave the tool developers im-
mediate feedback on tool usability and possible software
faults. This feedback has been taken into account by the
developers. All developers have provided their best sup-
port and cooperation for the external test.

The Challenge has encouraged WCET research and
activities in the WCET community. During the Chal-
lenge, many developers were engaged in developing and
improving their tools further. A total of 25 updated ver-
sions of the software were submitted for the external
tests. Bugs were fixed, and their latest releases in the
Challenge have demonstrated the improvements of the
WCET tools.

The Challenge improved the awareness of the tool
developers concerning requirements from industry, e.g.
support for model-based design. At the ISoLA 2006 con-
ference, the Challenge has also caught the attention of
more WCET developers. They showed their interest to
participate in future WCET Challenges. We anticipate

18 Lili Tan

positive effects of the Challenge on the WCET commu-
nity in tool development and industrial application.

Future work. It would be desirable to compare tools sup-
porting the same target in the Challenge. The impact
of different hardware features on precision and analyz-
ability could be incorporated into a future Challenge.
Furthermore, the benchmarks could be partitioned into
different categories, e.g. industrial application code vs.
WCET research code, model-based synthesized code vs.
hand-written code. Current WCET analysis tools do not
exploit the specifics of synthesized code. Directions for
future research could include a study about code gen-
erated by different model-based development environ-
ments, like SCADE [24], Matlab/Simulink [20], and AS-
CET [4]. For example, it might be worthwhile to in-
vestigate if control-flow dependencies arising from the
structure of state automata can be leveraged to improve
tightness of WCET estimates.

Acknowledgements Thanks to the support by Jan Gus-
tafsson, Reinhard Wilhelm, and the WCET Tool Challenge
Working Group. Thanks to the anonymous reviewers for their
detailed comments. Thanks to the support by Klaus Echtle
and Christina Braun at the University of Duisburg-Essen,
ICB/Computer Science. Thanks to the support by WCET
tool developers during the WCET Tool Challenge 2006. They
are Christian Ferdinand, Martin Sicks, Steffen Wiegratz, Flo-
rian Martin, Reinhold Heckmann, and Christoph Cullmann
of AbsInt Angewandte Informatik GmbH, Reinhard Wilhelm,
Stephan Thesing, Björn Wachter, and Philipp Lucas of Saar-
land University, Niklas Holsti of Tidorum Ltd., Björn Lisper,
Jan Gustafsson, Stefan Bygde of Mälardalen University, Rai-
mund Kirner, Ingmar Wenzel, and Berdhard Rieder of TU-
Vienna, Tulika Mitra, Abhik Roychoudhury, Vivy Suhendra,
and Liangyun of National University of Singapore.

References

1. aiT. http://www.absint.de/ait/.

2. Altium Tasking Compiler. http://www.altium.com/

TASKING/.

3. ARM9. http://www.arm.com/products/CPUs/

families/ARM9Family.html.

4. ASCET. http://www.etas.com/de/products/ascet_

software_products.php.

5. Bound-T. http://www.tidorum.fi/bound-t/.

6. C-Lab. http://www.c-lab.de/.

7. Chronos. http://www.comp.nus.edu.sg/~rpembed/

chronos/.

8. Cosmic. http://www.cosmicsoftware.com/.

9. CPLEX. http://www.ilog.com/products/cplex/.

10. Freescale MPC565. http://www.freescale.com/

webapp/sps/site/prod_summary.jsp?code=MPC565.

11. Gaisler BCC Compiler. http://gaisler.com/doc/bcc.

pdf.

12. GNU C Compiler. http://gcc.gnu.org/.

13. Graphviz. http://www.graphviz.org/.

14. H8/300. http://eu.renesas.com/fmwk.jsp?cnt=

h8300_series_landing.jsp&fp=/products/mpumcu/h8_

family/h8300_series/.

15. HCS12. http://www.freescale.com/webapp/sps/site/

overview.jsp?nodeId=02Wcbf8WD69BXm.

16. IAR. http://www.iar.com/.

17. Infineon. http://www.infineon.com/

cms/en/product/channel.html?channel=

ff80808112ab681d0112ab6b2f42075b.

18. ISO9241. http://en.wikipedia.org/wiki/ISO_9241.

19. Mälardalen Benchmarks. http://www.mrtc.mdh.se/

projects/wcet/sweet.html.

20. Matlab/Simulink. http://www.mathworks.com.

21. MIPS. http://www.mips.com/.

22. PapaBench. http://www.irit.fr/recherches/ARCHI/

MARCH/rubrique.php3?id_rubrique=97/.

23. Paparazzi Project. http://paparazzi.enac.fr/wiki/

index.php/Main_Page.

24. SCADE. http://www.esterel-technologies.com/

products/scade-suite/.

25. SimpleScalar. http://www.simplescalar.com/.

26. SPARCV7/V8. http://www.sparc.org/

specificationsDownload.html.

27. SPEC95. http://www.spec.org/cpu95/.

28. SWEET. http://www.mrtc.mdh.se/projects/wcet/

sweet.html.

29. TMS470. http://focus.ti.com/mcu/docs/

mcuprodoverview.tsp?sectionId=95&tabId=

203&familyId=454.

30. WCET Discussion Group. http://tech.groups.yahoo.

com/group/wcet/.

31. WindRiver Compiler. http://www.windriver.com/

products/development_suite/wind_river_compiler/.

32. WCET Tool Challenge 2006. Internet, 2006. http://

www.idt.mdh.se/personal/jgn/challenge/.

33. M. Berkelaar. lp solve: A mixed integer linear program

solver. Tech. rep., Eindhoven University of Technology,

1997.

34. Jakob Engblom. Processor Pipelines and Static Worst-

Case Execution Time Analysis. PhD thesis, Uppsala Uni-

versity.

35. Christian Ferdinand. Cache Behavior Prediction for

Real-Time Systems. PhD Thesis, Universität des

Saarlandes, 1997. http://rw4.cs.uni-sb.de/~ferdi/

publications.html.

36. Jan Gustafsson. The WCET Tool Challenge 2006. In

Bernhard Steffen Tiziana Margaris, Anna Philippeu, ed-

itor, Second International Symposium on Leveraging Ap-

plications of Formal Methods (ISOLA’06), pages 233–

240, November 2007.

37. David Harel. Statecharts: A visual formalism for complex

systems. Sci. Comput. Program., 8(3):231–274, 1987.

38. Seoul National University Real-Time Research Group.

SNU-RT. http://realtime.snu.ac.kr/realtime/.

39. University of Maryland. The Omega project. http://

www.cs.umd.edu/projects/omega/.

The Worst-Case Execution Time Tool Challenge 2006 19

40. Lili Tan. The Worst-Case Execution Time Tool Chal-

lenge 2006: The External Test. In Bernhard Steffen

Tiziana Margaris, Anna Philippeu, editor, Second In-

ternational Symposium on Leveraging Applications of

Formal Methods (ISOLA’06), pages 241–248, November

2007.

41. Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and

Peter P. Puschner. Measurement-Based Worst-Case Ex-

ecution Time Analysis. In SEUS, pages 7–10. IEEE Com-

puter Society, 2005.

42. Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and

Peter Puschner. Automatic timing model generation by

cfg partitioning and model checking. In DATE ’05: Pro-

ceedings of the conference on Design, Automation and

Test in Europe, pages 606–611, Washington, DC, USA,

2005. IEEE Computer Society.

43. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,

Niklas Holsti, Stephan Thesing, David Whalley, Guillem

Bernat, Christian Ferdinand, Reinhold Heckmann, Tu-

lika Mitra, Frank Mueller, Isabelle Puaut, Peter

Puschner, Jan Staschulat, and Per Stenström. The worst-

case execution-time problem—overview of methods and

survey of tools. Trans. on Embedded Computing Sys.,

7(3):1–53, 2008.

44. Reinhard Wilhelm, Jakob Engblom, Stephan Thesing,

and David B. Whalley. Industrial Requirements for

WCET Tools - Answers to the ARTIST Questionnaire.

In Jan Gustafsson, editor, WCET, volume MDH-MRTC-

116/2003-1-SE, pages 39–43. Department of Computer

Science and Engineering, Mälardalen University, Box

883, 721 23 Väster̊as, Sweden, 2003.

