
1Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Application Specific Circuits for
Embedded Systems

Analog/Digital/Audio

Laser Diode Drivers

Interface
Line Receiver and

Transmitter

LANS
Local/Wide Area

Networks

Motion Control

Power Management

Sensors and Signal
Conditioners

Acceleration

Magnetic

Temperatur

Temperatur
Controllers

Signal
Conditioners

Communications

Wireless

Telecom/
Datacom

Video / Multimedia

Microprocessor
Supervisory

2Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Sensors Data
Acquisition Memory Processor Output Actuators

A/D

Codec

Digital
(Fifo, Latch
Register)

Dual Port
RAM

RAM

Multi Port
RAM

Shared
RAM

Fifo

Micro-
controller

Transputer

DSP

Micro-
processor

Gate-Array
Core-

Processor

DSP Multi-
Processor
System

D/A

Digital

SSI/SPI

CAN,
Profibus

Display

Network
(Ethernet)

A more generall view to
different functional blocks
used in embedded
systems.

Bus-
Interfaces

Voltage,
Current

Temp-
erature

Light,
Pressure,

Noise

Audio,
Ultrasound

Position,
Velocity

Acceleration

Human
Interfaces

....

Relay, Led
Lamp

Loud-
speaker

Switch

Motor

....

D/A

FPGA

3Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Interface techniques for data acquisition and control

for MCU/DSP-based Embedded Sytsems
• MCUs provide high performance in general applications

– optimised for control flow applications with I/O-signals, complex interrupt interactions and user
interfaces

• DSPs provide unbeatable performance in signal-processing applications by high
computation power

– Optimised for high data transfers
– Single-cycle execution of fundamental processing operations by ALU, MAC and SHIFTER
– Intensive use of Multi-Instructions (single/multiple execute, fetch and store in one cycle)

– However lots of secondary processes/tasks have to be executed
• Data have to be acquired and/or output
• Signal processing is controlled by additional conditions from the environment and user settings

(communication with a master processor, user interfaces, sensors and actuators)

• The benchmark examples of the manufacturers give us the impression, that the optimised
code for the used algorithm is the whole work !

– For example: The code of a FFT algorithm assumes that the data are already available in the internal
memory and often all internal busses are occupied by the optimised use of data movements.

– First the data has to be transfered from a source to the internal/external memory

4Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Interface techniques for data acquisition and control

for DSP-based Embedded Sytsems
• This is not realistic

– In parallel with the execution of algorithms, the processor has:
• To read from A/D-converters
• To write to D/A-converters
• store/read data samples in buffers
• sample I/O-ports
• communicate (read/write) with host MCUs or communication devices

– This different tasks often lead to interrupts, bus locks or bus collisions from internal to external
memory.

• Data Aquisition and data output
• Control Interface
• DSP and Memory
• Multiprocessing Techniques
• Code Development (Compiler/Linker)

5Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

A/D
Converter

A/D
Converter

DSPDSP MCUMCU

Com.
Interface

Com.
Interface PCPC

D/A
Converter

D/A
Converter

Typical structure of Embedded Systems

User
Interface

User
Interface

Digital
I/O

Digital
I/O

Anti-Aliasing
Filter

Anti-Aliasing
FilterIn

Amp.

In
Amp.

Smoothing
Filter

Smoothing
FilterOut

Amp.

Out
Amp.

Sensor

Analog
Out

DSPDSP MCUMCU

Com.
Interface

Com.
Interface PCPC

User
Interface

User
Interface

In
Amp.

In
Amp.

Out
Amp.

Out
Amp.

Microphone

In
Amp.

In
Amp.

Out
Amp.

Out
Amp.

Speakers

CODECCODEC

6Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Data Aquisition

A/D D/A

Parallel I/O

Stereo & Computer
Audio (CODEC)

Parallel I/O

Serial I/OSerial I/O

Parallel I/O

Serial I/O

SSI

I2C

SSI

I2C

SSI

I2C

7Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Data Acquisition : Serial Interface

• Most DSP systems processes real-world-data
– by the aid of A/D and D/A converter
– digital data transmitted by point-to-point links or networks

• Aquisition of a data stream by a general synchronous serial
interface (SSI or I2C)

– All general purpose DSP have at least one serial port built in peripheral

Advantages:
– Industrie standard converters and Codecs can be connected without

additional glue logic
– Offer multi-channel-support for time division multiplex interfaces
– Easy to isolate and to decouple in electrically point of view
– Few signals (6) are necessary for bidirectional, independant data transfer
– Independence from external bus operations, SSI is able to work stand-

alone
– Different techniques for data aquisition are possible

• Single write/read transfer
• DMA weite/read block-buffer transfer
• Polling mode
• Interrupt driven transfer

Disadvantage:
– Slow data aquisition performance (typcially up to 200 KHz analog bandwith

(max. 1 MHz)

A/D
Converter

A/D
Converter

DSP/
MCU

DSP/
MCU

D/A
Converter

D/A
Converter

- SSI
- I2C

8Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

• The mode of the SSI port can be configured by control registers
– Polarity of Frame signals
– Frame sync type
– Clock timing and frame cycle timing (internal or external)
– Multi-channel support for time division multiplex interface; pre-selected time-slots

will be read to reduce transfer time and to releave the Core Processor

• Clocks and frame signals are generated internallly: DSP is master
• Clock and frame signal are generated externally: DSP is slave
• The max. clock frequency is today 30 MHz up to 100 MHz (30 Mbit/sec to 100 Mbit/sec)
• The limitation is not the clock frequency; it is the analog bandwidth and the serializer

of the A/D or D/A converter

A/D
Converter

A/D
Converter DSPDSP

RCLK

RFS

DRx

D/A
Converter

D/A
Converter DSPDSP

TCLK

TFS

DTx

RFS

RCLK

DRx

RCLK: Receive Clock
RFS: Receive Frame Signal
DRx: Receive Data

TCLK: Transmit Clock
TFS: TransmitFrame Signal
DTx: Transmit Data

3 Wire Interface

9Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Example: AD5324 / Analog-Devices

• Quad Serial-Input D/A converter
• No additional Glue-Logic
• Four buffered 12-Bit DACs
• DSP-Compatible 3-Wire Serial Interface (SSI)
• Low Power, SPI, QSPI and Microwire Interface
• Additional Update Signal for all DACs

10Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Data Format for a 4 Channel DAC:

• Additional cycles are necessary to encode the data to the DAC
– Address selection
– Update Mode
– Power Down Mode

• Data tansfer from the converter to the memory is possible by
– Write/read by Core-Processor

• Polling mode
• Interrupt mode
• Not preferable, because the Core-Processor is locked by serial read/write for other tasks

– DMA mode (Direct Memory Address)
• Polling mode
• Interrupt mode
• Usefull for block buffer transfer
• Core-Processor is relieved for other tasks

• 12 Bit Data (-2048 to +2047)
• 2 Bit Address (4 DACS addressable)
• 2 Bit Control (PD: Power Down; LDAC: Load

Dac Immediate)

11Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Special serial device for audio applications:
Sound-Port-Codec

• Example AD1849 / Analog Devices

SSI

12Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

General Description

• The Serial-Port 16-Bit Stereo Codec integrates the audio data conversion and control functions in one single
integrated device.

• A Codec is a single-chip audio solution for multimedia applications.
• Externel signal components and requirements are limited to three capacitors for line level application.
• So called Anti-Imaging filters are incorporated on-chip.
• The chip includes on-chip monoaural speaker and stereo headphone drive circuits.
• The dynamic range exceeds 80 dB across the audio bandwidth of 20 KHz.
• Sample rates up to 48 KHz are supported from external crystals, an external clock or from the serial

clock of the SSI port.

• The Codec works with a pair (Stereo) of Sigma-Delta analog-to-digital converters and a pair of
of Sigma-Delta digital-to-analog converters.

• Analog signal are fed to the chip at line levels or microphone levels.
• A programmable gain stage allows the setting of independant gains into the ADC
• The ADCs digital output data can be mixed with the DACs input.
• The channels (with 16-bit data) are available over a single bidirectional serial interface that also

manages 16-bit digital input to the DAC and additional control information.
• Additional feature: compress and decompress technique.
• Integration of a digital interpolation filter and a attenuator control circuit for volume adaption.
• Nyquist images and quantization noise are removed from the DACs analog stereo output by an on-chip switched-

capacitor and continues-time filters.

13Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Time and Frequency Considerations of SSI based Converters

Serial
Interface

Processor Analog
Signal

Cycle time
[us]

Transfer rate
[Mbit/sec]

Transfer time
16 Bit [us]

Cycle time
[ns]

Count of
Instructions

Frequency

1 1 16 0.025 640 < 32 kHz
0.1 10 1,6 0.025 64 < 312 kHz
0.05 20 0,8 0.025 32 < 625 kHz
0.03 33 0,48 0.025 19 < 1 MHz

Result:

• Use the highest possible data rate on SSI interface
• Use DMA transfer to releave the processor
• Use interrupt technology for event triggering

•Typicall situation for audio processing

• 48 kHz sample rate
• 20.8 us / sample
• 20.8 us = interrupt
• 40 MHz DSP <-> at least 832 single instructions

14Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

I2C Interface

• I2C is a two wire interface with a special protocoll
• Used for slow A/D-, D/A converters and digital input/output devices (100 kHz)
• Uses a serial data I/O line (SDA) and a serial clock (SCL).
• A select line (as Frame) is not required
• Data transfer may be initiated only when the bus is not busy (multiple devices are possible)

– Each device has a unique address on the bus

• During such transfer, the data line (SDA) must remian stable whenever the clock line (SCL) is high
• Changes in the data line while the clock line is high are interpreted as a START or STOP condition

• A typical transfer format:

SDA

SCL

Start

A7 A6 A5 A4 A3 A0A1A2 RW Ak D7 D6 D5 D4 D3 D0D1D2 Ak

Acknowledge
from Slave

Acknowledge
from Slave

S

S

Stop

15Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

I2C Interface

• A communication is set up by a master sending a start condition, a high-to-low transition on SDA while the
serial clock (SCL) input is high

• After the start condition, the device address byte is send; MSB first, including the data direction bit (R/W)
• After receiving the valid address byte, the slave device responds with an acknowledge, a low on SDA

during the high of the acknowledge-related clock pulse.
• The data bytes follows the address acknowledge. If the R/W bit is high a read cycle is performed.
• The data byte is followed by an acknowledge sentd from the device.
• Other data bytes are possible always followed by an acknowledge send from the device
• A stop condition, a low-to-high transition on the SDA input/output while the SCL is high, is send by the

master after transfer

16Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Data Acquisition : Parallel Interface

• High-speed data acquisition usual requires a parallel
interface because of the speed limitation of a serialized
process.

• Aquisition of a data stream by a parallel interface
– All general purpose DSP have at least one parallel port, the

external high-speed memory interface

– Different techniques for data aquisition are possible
• Single write/read transfer
• DMA write/read block-buffer transfer
• Polling mode
• Interrupt driven transfer
• Transfer via additional components (Fifo, Dual-Port-Ram, ...)

Advantages:
– High speed data aquisition

Disadvantages:
– Additional Glue-Logic
– Performance is dependant from external bus operations as

memory accesses or othe DMA processes
– Alignment of the data bits of the converter to the bits of the

processor format is necessary.

A/D
Converter

A/D
Converter DSPDSP

Glue-Logic
Addres-Dec.

Glue-Logic
Addres-Dec.

Output Enable

Conversion Ready

111 000000

Example: 12-Bit ADC; parallel interface; write
twos-complement format to a 16-bit DSP

+Vmax: 0100.0000.0000.0000
0 0000.0000.0000.0000
-1 1111.1111.1111.1111
-Vmax: 1000.0000.0000.0000

by additional Hardware or arithmetic shift !

1

Bit-0

1 1

Bit 12 = Sign

1 X000001 11 111 000000 11 1 X XX

Bit 15 Bit-0

17Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Data rate by the different acquisition modes and
transfer techniques

• An ADC (parallel/serial) and an interrupt service routine (ISR) is used for data convert/transfer to an
internal buffer; no additional buffering (Fifo,...) for the parallel mode is used

Idle start

adc_isr

prcs
#n

Req_prcs#n

Ack_prcs#n

Req_irq

Req_irq

stop

asynchron

Rti

Rti

In C:

--
void adc_isr()
{

buff[index++] = *(int *) adc
}
--

• If interrupt
• code in the pipeline will be flushed
• put PC on the stack
• load PC with the address from IRQ-vector-table
• save actual context (from prcs#n or idle)
• do ISR code (load data from ADC to buffer)
• restore context
• restore PC address from stack
• fill execution pipeline
• continue processing of prcs#n or idle by return

from interrupt

Result:
• We need a lot of additional cycles for reading

one data
from the ADC

• Only continuous acquisition mode with low
speed is possible

18Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Problems

• Cycle time is not the only criterion; length of pipeline is important
• if external memory is accessed the time will increase (additional fetch cycles; in general only one external

hardware bus interface is avaliable, speed of external memory !
• C-Compilers will not always track the register usage inside the ISR and therefore will save and/or restore a

partial set of registers, which wasts additional cycles)
• The interrupt implementation varies in C; (SHARC: needs 26 cycles (cycle-time: 25 ns) in the fastest mode

(= 650 ns !)
– Solution: fast context switch to the second register/Index set and hand coded ISR entrance !

• It is not preferable to call a function inside the ISR
• If possible, the ISR should only set a flag; a dispatcher should manage the following actions by a normal

function call
• Some instructions are not interruptable
• Interrupt nesting has to be used very carefully

Conclusion:

• Interrupt driven data transfer is not preferable above one or two MHz (depends on the processor)
• Use interrupt with the highest priority and enable the nesting mode

19Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Polling Mode

• An ADC (parallel/serial) and polling mode
is used for data convert/transfer to an
internal buffer; no additional buffering
(Fifo,...) for the parallel mode is used

• The ADC ready signal is sampled by the
processor-core

Wait

Read
adc

(adc_stat & adc_rdy)

In C:

void main()
{

while(1) {
....
while(!(*(int *) adc_stat & adc_rdy));

buff[index++] = *(int *) adc;
do_task();

....
}

}
--

• If interrupt
• Loop1:

• load address register with adc_stat
to register

• load constant adc_rdy to register
Loop2:

• load adc_stat to register
• perform ‚&‘
• if result = 0 jump Loop2

• load address register with adc
• load address register buffer
• load register with index
• load data from adc to register
• store register to buffer
• increment index
• perform the function ‚do_task‘
• jump Loop1

Result:
• We need fewer cycles as for the interrupt ISR
• If the DSP has BIT-Test fuctions or is able to test

directly an I/O-signal, the process is much faster, but
generally it demands hand coded inline assembly
statements !

!(adc_stat & adc_rdy)

Do_task

rts

20Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Block-wise Polling Mode

• Polling mode has more efficiency if the dataacquisition is performed block-wise. In this transfer mode, the
indices and addresses remain in registers. No re-load is required for each loop.

• In this case the data acquisition is non-continuous; no data are loaded during a signal processing task.

In C:

--
void main()
{

while(1) {
....
for(i=0; i<imax; i++) {

while(!(*(int *) adc_stat & adc_rdy));
buff[index++] = *(int *) adc;

}
do_task();
....

}
}
--

Best result, because we stay inside the loop, no re-load of register and addresses.

Conclusion
• Polling is only useful for block-wise and non-continuous data acquisition at high sample rate.
• For high speed applications interrupts or bus locking processes have to be prevent during polling mode.

21Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

DMA Transfer

• Nearly all MCUs and DSPs have efficient DMA controller capabilities without CORE access in order to move:
– data to and from memory
– data to and from built in peripheral

• The DMA process is event driven by an external DMA-request signal or by an internal start condition via
watching status-register contents (serial transmitter/receiver buffer empty, full,).

• DMA controller increments automatically addresses or manages circular buffering.
•
• Because the processor-core is not loaded with the action, the acquisition speed depends only from the

maximum serial bit rate or the parallel transfer rate via the external bus.

• The process has to be synchronised to the data stream by watching DMA status bits or DMA complete
interrupts.

• Best result are given by block-mode transfer (input to buffer, buffer to output, internal buffer transfer)

• DMA data transfer may be continuous too (depends from the application)

22Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

DAQ 1

8*4*32

DAQ 2

8*4*24

Instruction
Cache

32*48-Bit

Timer

Bus
Connect

(PX)

JTAG

Test &
Emulation

Host Interface

Multiprocessor
Interface

IOP
RegistersBarrel

Shifter ALUMultiplier

Data
Register

File

16*40 Bit

I/O Processor

Core Processor

External Port

Program
Sequencer

Serial Ports
(2)

Link Ports
(6)

Addr
Bus
Mux

Data
Bus
Mux

DMA

PMA
EPA

DMD
EPD
PMD

IOA
17

IOD
48

7

32

48

36

4

6

6

24

32

48

32/42

PM Address Bus (PMA)

PM Data Bus (DMA)

PM Data Bus (PMD)

DM Address Bus (DMA)

Dual-Ported SRAM

Two Independent,
Dual-Ported Blocks

Processor Port
DATAADDR DATA ADDR

I/O Port

PMD

D
M

D

IO
D

EP
D

Control,
Status, &

Data Buffers
EP

A
IO

A DMA
Controller

DeviceDevice

Example SHARC DSP

ext.
Peripherie

ext.
Peripherie

SSISSI

LINKLINK

DMA process:

• internal memory <-> ext. memory and
memory mapped devices

• internal memory <-> internal memory
of other DSPs

• internal memory <-> host processor
• internal memory <-> serial port I/O
• internal memeory <-> link port I/O
• external memory <-> external peripherie

• DMA runs with cycle steeling from the core

External
Memory

External
Memory

23Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

In C:
--

#define DMA_src 0xe1
#define DMA_dst 0xe2
#define DMA_src_inc 0x3e
#define DMA_dst_inc 0xe4
#define DMA_count 0xe5
#define DMA_start 0x3252

volatile int src_buf, dst_buf, src_inc, dst_inc, cnt;

void main()
{

while(1) {
....
DMA_src = src_buf[0]; /* initialize DMA */
DMA_dst = dst_buf[0]; /* .. */
DMA_src_inc = 1; /* .. */
DMA_dst_inc = 1; /* .. */
DMA_count = 1024; /* .. */
DMA_start = START; /* start DMA */

while(!dma_ready); /* polling mode: wait on DMA
ready */

do_signal_process();
}

IDLE;
}
--

Examples: DMA Transfer

Result:
• The speed depends on the data rate of the used

transfer ports (serial, parallel).
• A DSP with 25 ns bus cycle is able to transfer 40
data values per microsecond (40 Mbyte/sec) if
internal memory is used and there are no collisions
with other DMA processes.

• The process has to be carefully tested for bus idle
cycles and possible bus conflicts, in order to
determine the achievable maximum speed.

Whereever applicable use a DMA process, because
DMA save core-processing time.

24Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Speed-up of data acquisition

• If the acquisition speed is above 20 MHz, the DSP needs additional hardware assistance to perform the
required specification.

• Different techniques exists:

If the data-aquisition has a finite count of samples:
– Integration of a fifo structure for block-read operations.
– Bank switching techniques (Ping-Pong, ...).
– Fit the bit-size of external devices carefully to the bit-size of the processor to save processing time;

connect the external bits to the upper data bits. Additional masking and shifter operations depends
on the selected processor.

The data-aquisition process is always active and/or faster than the clock cycle:
– Data preprocessing by high speed Gate-Array based devices, e.g. to reduce the sampling frequency

(sampling rate) before the data are passed to the processor for further processing steps.
– Use Multiprocessing Systems, More in the Lecture about Signal Processing Techniques

25Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Speed-up of data acquisition by additional buffering

A/D
Converter

A/D
Converter DSPDSP

FifoFifo

Glue-Logic
Addres-Dec.

Glue-Logic
Addres-Dec.

A/D
Converter

A/D
Converter DSPDSP

PP1-RamPP1-Ram

Glue-Logic
Addres-Dec.

Glue-Logic
Addres-Dec.

PP2-RamPP2-Ram

M
U
X

M
U
X

Ping-Pong Memory (PP)

Fifo memory

A/D
Converter

A/D
Converter

DSPDSP

LatchLatch

Glue-LogicGlue-Logic

D0-D15

D16-D31

26Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

• Assembler for SHARC : Single Word without
Interrupt (by Core-Processor)

#include <asm_sprt.h>;
#define N 8
.SEGMENT /pm seg_pmco;
.global _SerTransfer;
.extern _rbuf;
_SerTransfer:

entry;
puts=r0; /* save data register & address register */

r0=i0; puts=r0;
r0=b0; puts=r0;
r0=l0; puts=r0;

r0 = 0x00130007; /* definitions for serial transfer */
dm(TDIV0)=r0; /* load to ser CLOCK register */
r0 = 0x000064f1; /* definitions for serial transfer division */
dm(STCTL0)=r0; /* load to ser CONTROL register */
b0=rbuf; /* pointer to rbuf[0] */
l0=@rbuf; /* length of rbuf */
lcntr=N, do tx_loop until ce; /* if TXO is nit empty, Core-processor halts !! */

r0 = dm(i0,1);
tx_loop: dm(tx0)=r0;

r0=gets(1); l0=r0; /* restore data register & address register */
r0=gets(2); b0=r0;
r0=gets(3); i0=r0;
r0=gets(4);
alter(4);
exit;

.endseg;

SHARC-code examples in Assembler for transfer of data
via serial interface

• Assembler for SHARC : Single Word with
Interrupt

#include <asm_sprt.h>;
#define N 8
.SEGMENT /pm seg_pmco;
.global _SerTransfer;
.extern _rbuf;
_SerTransfer:

entry;

/* save the used register on stack !! */

r0 = 0x00130007; /* definitions for serial transfer */
dm(TDIV0)=r0; /* load to ser CLOCK register */
r0 = 0x000064f1; /* definitions for serial transfer division */
dm(STCTL0)=r0; /* load to ser CONTROL register */
b0=rbuf; /* pointer to rbuf[0] */
l0=@rbuf; /* length of rbuf */
bit set mask imask SPT01; /* enable sport0 interrupt */
bit set mode1 IRPTEN; /* global IRQ enable */
r0=dm(i0,1);
dm(TX0)=r0; /* kick off sport0 */

/* restore the register from stack */
exit;
Serial Interrupt works as a background task--------------------
s0tx: rti(db);

r0=dm(i0,1);
dm(TX0)=r0;

.endseg

27Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

• Assembler for SHARC : DMA Transfer with
Interrupt

#include <asm_sprt.h>;
#define N 64
external
_SerDMATransfer:

entry;
save the used register !!
r0=sbuf; dm(II3)=r0; /* start pointer of source buffer */
r0=dbuf; dm(II1)=r0; /* start pointer of destination buffer */
r0=1; dm(IM3)=r0; /* DMA increment */

dm(IM1)=r0; /* DMA increment */
r0=@sbuf; dm(C3)=r0; /* lenght of source buffer */

dm(C1)=r0; /* = length of destination buffer */
r0=0x004421f1; dm(SRCTL1)=r0; /* set serial control register 0 */
r0=0x00130007; dm(TDIV1)=r0; /* set clock register */
r0=0x000465f1); dm(STCTL1)=r0; /* set serial control register 1 */

bit set imask SPRLI; /* enable sport1 receive interrrupt */
bit set mode1 IRPTEN; /* global IRQ enable */

restore the used register !!
exit;

s1rx: rti; /* this interrupt will occur only once */

.endseg;

• Assembler for SHARC : DMA

• This example shows the use of on-chip DMA
controller to handle serial data. The controller
realizes data transfers between internal memory
and the SPORTs, providing the most efficient way
of block-mode-transfer. When the DMA is set up,
the DMA controller operates independently from
the SHARC processor-core. The interrupt is only
active for one time when an entire data-block has
been received (or transmitted). This frees the core
to continue other tasks.

• This example sets up a SPORT DMA transfer and
receive for serial SPORT1 in the loopback mode,
The buffer sbuf is transfered by DMA out of the
SPORT. The loopback mode internally attaches the
different control signals. The receive DMA places
the data in the buffer dbuf.

28Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

SHARC-code examples in C and Assembler for transfer of data from
a fifo to internal buffer

• AINSI C for SHARC:
• Copy a buffer from Fifo to memory

TsCnt = 1024;

void CCpyFifoToMem()
{

for (i=0; i<TsCnt; i++) rbuf[i]= fifo_adr >> 16;
}

_L$247:
r4=dm(_i);
r4=r8+r4, r2=dm(i4,m5);
r2=ashift r2 by -16;
i0=r4;
dm(i0,m5)=r2;
r2=dm(_i);
r2=r2+1;
dm(_i)=r2;
r12=dm(_TsCnt);
comp(r2,r12);
if lt jump (pc,_L$247);

!gs

11 cycles

The 16 bit of the Fio are connected to D31-D16:

• needs a arithmetic shift for 2er complement

(1024 * 11) + 20 = 11284

29Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

• Assembler for SHARC without multfunction
• instructions
• Copy a buffer from Fifo to memory

#include <asm_sprt.h>;
.SEGMENT /pm seg_pmco;
.global _ASMCpyExtFifoToMem;
.extern _rbuf;
.extern _TsCnt;
_ASMCpyExtFifoToMem:

entry;
puts=r0; /* save data register & address register */
puts=r2;

r0=i1; puts=r0;
r0=i4; puts=r0;
i4=0x440004; /* fifo base address */
i1=_rbuf; /* destination buffer */
r0=dm(_TsCnt);

lcntr=r0, DO loop1 UNTIL LCE; /* (N * 3)*cycle time */
r2=dm(i4,m5); /* load from fifo, m5 = 0 */
r2=ashift r2 by 0xfffffff0; /* alignment of 16 bit to 32 bit bus */

loop1: dm(i1,m6)=r2; /* store ti internal buffer */

r0=gets(1); i4=r0; /* restore data register & address register */
r0=gets(2); i1=r0;
r2=gets(3);
r0=gets(4);
alter(4);
exit;

.endseg;

• Assembler with multifunction instructions
• Copy a buffer from Fifo to memory

#include <asm_sprt.h>;
.SEGMENT /pm seg_pmco;
.global _ASMFast;
.extern _rbuf;
.extern _TsCnt;
_ASMFast:

entry;

puts=r0;
puts=r2;
puts=r4;

r0=i1; puts=r0;
r0=i4; puts=r0;

i4=0x440004;
i1=_rbuf; /* pointer to destination buffer[0] */
r0=dm(_TsCnt);
r0=ashift r0 by 0xffffffff; /* TsCnt / 2 */

r2=dm(i4,m5); /* rbuf[0] */

lcntr=r0, DO loop3 UNTIL LCE;
r2=ashift r2 by 0xfffffff0, r4=dm(i4,m5);
r4=ashift r4 by 0xfffffff0, dm(i1,m6)=r2;
r2=dm(i4,m5);

loop3: dm(i1,m6)=r4;

r0=gets(1); i4=r0;
r0=gets(2); i1=r0;
r4=gets(3);
r2=gets(4);
r0=gets(5);
alter(5);
exit;

.endseg;

(1024 * 3) + 17 = 3089

(512 * 4) + 20 = 2068

30Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

• Assembler for SHARC without multifunction
instructions and modulus

#include <asm_sprt.h>;
. .SEGMENT /pm seg_pmco;
.global _ASMCpyExtAbsFifoToMem;
.extern _rbuf;
.extern _TsCnt;
_ASMCpyExtAbsFifoToMem:

entry;
puts=r0;
puts=r2;

r0=i1; puts=r0;
r0=i4; puts=r0;
i4=0x440004;
i1=_rbuf;
r0=dm(_TsCnt);
lcntr=r0, DO loop2 UNTIL LCE;

r2=dm(i4,m5);
r2=abs r2; /* modulus of value */
r2=ashift r2 by 0xfffffff0;

loop2: dm(i1,m6)=r2;
r0=gets(1); i4=r0;

r0=gets(2); i1=r0;
r2=gets(3);
r0=gets(4);
alter(4);
exit;

.endseg;

(1024 * 4) + 17 = 4117

• Assembler for SHARC with multifunction
instructions and modulus function

.SEGMENT /pm seg_pmco;

.global _ASMFastAbs;

.extern _rbuf;

.extern _TsCnt;
_ASMFastAbs:

entry;
puts=r0;
puts=r2;
puts=r4;

r0=i1; puts=r0;
r0=i4; puts=r0;
i4=0x440004;
i1=_rbuf;
r0=dm(_TsCnt);
r0=ashift r0 by 0xffffffff;
r2=dm(i4,m5); /* rbuf[0] */
r2=ashift r2 by 0xfffffff0; /* 16 Bit ->> */
lcntr=r0, DO loop4 UNTIL LCE;

r2=abs r2, r4=dm(i4,m5); /* modulus of value */
r4=ashift r4 by 0xfffffff0, dm(i1,m6)=r2;
r4=abs r4, r2=dm(i4,m5); /* modulus of value */

loop4: r2=ashift r2 by 0xfffffff0, dm(i1,m6)=r4;
r0=gets(1); i4=r0;
r0=gets(2); i1=r0;
r4=gets(3);
r2=gets(4);
r0=gets(5);
alter(5);
exit;

.endseg; (512 * 4) + 20 = 2068

31Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

The results of the tasks may be output via D/A converters, transfered to other systems for further
processing or visualization, controls actuators via I/O-ports, field buses, networking components etc...
For D/A-converters, we use the same techniques and have the same restrictions.

Data Output

32Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Control Interface Technology

• Not all DSPs/MCUs can operate without external control devices.
• Most systems require additional devices (MCUs) for result-data transfer, visualisation and

user interface capabilities.

Solutions:
• Direct connection of keypads and displays to the DSP
• Direct bus interface by a micro-controller or a Master-system (Isa-Interface, PCI-Interface)
• Usage of bidrectional serial ports to conect to a HOST
• Integration of serial and parallel interfaces as RS232, RS422, RS485
• Integration of networks (Ethernet, Can, USB, Profibus)

• The choice depends on the overall application and the given requirements

33Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

A/D
Converter

A/D
Converter

DSPDSP MCUMCU InterfaceInterface

Master
(PC)

Master
(PC)

D/A
Converter

D/A
Converter

A/D
Converter

A/D
Converter

DSPDSP
InterfaceInterface Master

(PC)

Master
(PC)

D/A
Converter

D/A
Converter

Typical structure of Embedded Systems

User
Interface

User
Interface

User
Interface

User
Interface

DSP-MCU Interface

Master Interface

Control Interface Technology

Master Interface

34Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Control Interface Technology

• DSP to MCU (Master) by the built in parallel Host interface

– Host interface uses its own address, data and control siognals (independant)

– The host will take the control over the DSP via bus arbitration logic
• problems if the host is slow, the host locks the performance of the DSP

– Bidirectional register or latches with interrupt signals

– Bidrectional fifo structure with additional GLUE logic (in a Gate Array !)

– Dual-Port-Memory with interrupt signals

– Serial interfaces as SSI, SPI (fits in a CPLD or a small Gate Array)

Best choice if the data transfer is decoupled !

We need a protocol !

35Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

Host Interface Technology

DSPDSP MCUMCUFifoFifo

Glue-Logic
Addres-Dec.

Glue-Logic
Addres-Dec.

DSPDSP MCUMCU
Dual Port

Ram

Dual Port
Ram

Glue-Logic
Addres-Dec.

Glue-Logic
Addres-Dec.

DSPDSP MCUMCU
Gate ArrayGate Array

Gate-Array

• Bidirektional Fifo
• Bidirektional Latch
• Dual-Port
• Serial Interface (SSI,SPI)

Gate-Array

• Bidirektional Fifo
• Bidirektional Latch
• Dual-Port
• Serial Interface (SSI,SPI)

36Embedded Systems 2002/2003 © Dipl. Ing. Hans Rieder

• Multprocessing

• Industrial Interfaces

• Network and Protocol

