
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Exposing More Instruction-Level
Parallelism

• Degree of instruction-level parallelism inside basic blocks is limited –
typically to 2.

• The available parallelism in contemporary microprocessors grows.
Better exploitation by
– scheduling sequences of consecutive basic blocks
– scheduling entire loops
– speculation

• Two kinds of speculation:
– dynamic: based on hardware branch prediction. In case of mispredicted

branch forgetting or undoing effects of speculatively executed instructions.
– static: generating compensation code for "speculatively placed"

instructions.
– Recently: Static data and control speculation with hardware support to deal

with mispredictions (Intel IA-64).

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Trace and Superblock Scheduling

• Profile-directed scheduling of sequences of consecutive basic
blocks (traces, superblocks)

• Program annotated with profiling information: each branch of a
conditional associated with a relative frequency, or each basic
block annotated with its execution frequency.

• Profile used to identify frequently taken paths.

• Idea: if a sequence of basic blocks is often executed one after
another, they should be optimized jointly.

• Frequently taken paths (traces) are optimized at the cost of less
frequently taken traces.

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Trace Scheduling

• A trace is a sequence of consecutive basic blocks that are
frequently executed one after another. A trace is never
extended across loop boundaries.

• The control flow graph of a procedure is partitioned into a
disjoint set of traces.

• The traces are formed in the order of decreasing execution
frequency by repeatedly
– selecting the basic block with highest execution frequency that has

not been assigned to a trace yet as a seed of the new trace
– joining predecessors and successors to that trace in decreasing

frequency order until the frequency falls below a given threshold,
or a loop boundary is reached.

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

A Partitioning into Traces

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Trace Scheduling

• List scheduling of a trace leads to problems: the
semantics may be destroyed by
– code motion past side exists from the trace
– code motion past side entrances to the trace

• Consequence: compensation code has to be inserted
on off-trace paths.

• Problems of compensation code:
– code growth
– exceptions raised by compensation code

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Moving Statements across
Conditional Branches

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Moving a Statement past a Side
Entrance

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Branches and Joins

Exchanging branches

Moving a branch
up a control flow join

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Superblock Scheduling

• Goal: Avoiding code motion past side entrances by
tail duplication: copying code starting with side
entrance and redirecting the branches.

• Superblock formation:
– starts with a trace
– produces a trace without side entrances

• Compensation code only for code motion past side
exits.

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Standard Algorithms for Code
Generation

• Code selection by tree parsing.

• Register allocation by graph coloring.

• Instruction scheduling by
– list scheduling
– trace scheduling.

• Optimal algorithms for integrated code selection and
register allocation for expression trees and special
machine models.

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Code Selection

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Impact of Code Selection

struct {

unsigned b1:1;

unsigned b2:1;

unsigned b3:1;

} s;

s.b3 = s.b1 &&
s.b2;

ld.bu d5, [sp]48
extr.u d5, d5, #0, #1
ne d5, d5, #0
mov16 d4, d5
jeq d4, #0, _9
ld.bu d4, [sp]48
extr.u d4, d4, #1, #1
ne d4, d4, #0
_9:
ld.b d3, [sp]48
insert d3, d3, d4, #2, #1
st.b [sp]48, d3

9 cycles, 42 bytes

ld.bu d5, [sp]48
and.t d3, d5, #0, d5, #1
insert d5, d5, d3, #2, #1
st.b [sp]48, d5

3 cycles, 16 bytes

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

Generating Code Selectors

• Machine grammar: regular tree grammar;
– terminals: operators from the program representation
– non-terminals: represent storage resources
– often ambiguous
– each rule has associated costs
– factorization, e.g. of addressing modes reduces size.

DREG

AREG IREG

plus

plus

bconst

m

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Generating Code Selectors

• A machine grammar enables IR trees for expressions
to be derived. The derivation tree for an IR tree
represents one possibility of generating code for the
IR tree.

• The generated code selector
– parses intermediate representations of programs
– computes derivations according to the machine grammar,

each corresponding to a sequence of machine instructions
– has to select a cheapest derivation, corresponding to the

(locally) cheapest code sequence
– may compute costs in states or use dynamic programming

