Exposing More Instruction-Level
Parallelism

Degree of instruction-level parallelism inside basic blocks is —
typically to 2.
The available parallelism in contemporary microprocessors grows.
Better exploitation by

— scheduling

— scheduling

Two kinds of speculation:

: based on hardware branch prediction. In case of mispredicted
branch forgetting or undoing effects of speculatively executed instructions.

. generating compensation code for "speculatively placed"
instructions.

— Recently: data and control speculation with to deal
with mispredictions (Intel 1A-64).

Embedded Systems 2002/2003 (c) Daniel Kastner.



Trace and Superblock Scheduling

Profile-directed scheduling of sequences of
(traces, superblocks)

Program annotated with : each branch of a
conditional associated with a relative frequency, or each basic
block annotated with its execution frequency.

Profile used to identify

. If a sequence of basic blocks is often executed one after
another, they should be optimized jointly.

Frequently taken paths (traces) are optimized of less
frequently taken traces.

Embedded Systems 2002/2003 (c) Daniel Kastner.



Trace Scheduling

e A IS a sequence of consecutive basic blocks that are
frequently executed one after another. A trace is never
extended across loop boundaries.

e The control flow graph of a procedure is into a
disjoint set of traces.

e The traces are formed in the order of
by repeatedly

— selecting the basic block with highest execution frequency that has
not been assigned to a trace yet as a seed of the new trace

— joining predecessors and successors to that trace in decreasing
frequency order until the frequency falls below a given threshold,
or a loop boundary is reached.

Embedded Systems 2002/2003 (c) Daniel Kastner.



A Partitioning into Traces

f

Embedded Systems 2002/2003 (c) Daniel Kastner.



Trace Scheduling

List scheduling of a leads to problems: the
semantics may be destroyed by

— code motion past from the trace

— code motion past to the trace
Consequence: has to be inserted

on off-trace paths.

Problems of compensation code:
— code growth
— exceptions raised by compensation code

Embedded Systems 2002/2003 (c) Daniel Kastner.



Moving Statements across
Conditional Branches

L X i a
f
f F- o' 1 !
] 1
¥
il
e X n ;
F 1
Erie i
|
erplan
§
ul
: :
— |
X

Embedded Systems 2002/2003 (c) Daniel Kastner.



Embedded Systems 2002/2003 (c) Daniel Kastner.



Branches and Joins

if if
¥ I I " l~I |';| I
{F |F
1]
i o, =1 T
i T
- T 2 {F
Ir 1
ay ay
a1 o
L i
H
' if
= E &4 ‘
i
¥ 1]
il i
; } B
| |
! )|
Ha
&
Frl

#] T 71
Exchanging branches
i) v 4
2 Moving a branch
N up a control flow join

Embedded Systems 2002/2003 (c) Daniel Kastner.



Superblock Scheduling

e Goal: past side entrances by
. copying code starting with side
entrance and redirecting the branches.

e Superblock formation:
— starts with a trace
— produces a trace

e« Compensation code only for code motion

Embedded Systems 2002/2003 (c) Daniel Kastner.



Standard Algorithms for Code
Generation

Code selection by
Register allocation by

Instruction scheduling by

Optimal algorithms for
for expression trees and special
machine models.

Embedded Systems 2002/2003 (c) Daniel Kastner.

10



Code Selection

Embedded Systems 2002/2003 (c) Daniel Kastner.

11



Impact of Code Selection

struct {
unsi gned bl:1;
unsi gned b2: 1;
unsi gned b3: 1;

}os;

s.b3 = s.bl &&

3 cycles, 16 bytes

O cycles, 42 bytes

Embedded Systems 2002/2003 (c) Daniel Kastner.

12



Generating Code Selectors

Machine grammar: ;

terminals: operators from the program representation
non-terminals: represent storage resources

often ambiguous

each rule has associated costs

factorization, e.g. of addressing modes reduces size.

m
DREG > |

/plus/plus}onst
N

AREG IREG

Embedded Systems 2002/2003 (c) Daniel Kastner.

13



Generating Code Selectors

A machine grammar enables IR trees for expressions
to be derived. The for an IR tree

represents one possibility of generating code for the
IR tree.

e The generated code selector
— parses intermediate representations of programs

— computes derivations according to the machine grammar,
each corresponding to a sequence of machine instructions

— has to select a cheapest derivation, corresponding to the
(locally) cheapest code sequence

— may compute costs in states or use dynamic programming

Embedded Systems 2002/2003 (c) Daniel Kastner. 14



