Tree Languages

e Alphabet with arity is a finite set X of operators
together with a function p: ¥ — Nj, arity.

o X ={acX|pla) =k}

e The homogeneous tree language over X is the
following inductively defined set T'(X) :

—a € T(X) for all a € Xy;
— Are by,...,b, in T(X) and is f € X, so is
f(b1,...,bk) € T(D).

Example:

Y = {a, cons, nil},

p(a) = p(nil) = 0, p(cons) = 2.

Some trees over :

a, cons(nil, nil), cons(cons(a, nil), nil).

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 1

Patterns, Substitutions

V infinite set of variables (arity 0).

e pcT(XUV) is called a pattern over ¥,
e p is linear if no variable occurs twice in p.

e A Substitution ® maps variables to patterns,
O:V->TXEUV).

o O extendedto ® : T(XUV)=>T(XUV) by
t0 =20, ift=2 €V and
0 =a(t10,...,t0), ift = a(ty,...,t).

Let V = {X}.
X, cons(nil, X), cons(X,nil) are patterns over X.

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

Regular Tree Grammars
Regular Tree Grammar (RTG)
G = (N,X, P,S) consists of

e N, finite set of non—terminals,

e Y., finite alphabet (with arity) of terminals
(operators labeling nodes)

e P, finite set of rules X — s where X € N and
seT(XUN),

e S € N, the start symbol.

Notions:

e p: X — Y chain rule,

e p: X — shastype (Xi,...,Xg) — X, if j-th
occurrence of a non—terminal in s (counted from

the left) is X;.

e 5 results from s by replacing non—terminal X; by
variable z ;.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 3

Why “Regular”?

e Path words form a regular word language,

e Regular tree languages are closed under union,
intersection, and complement,

e Emptiness and therefore containment are decidable.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 4

Example: Lists

® Gl = (Nl,E,Pl,L>

o ¥ ={a,cons,nil}
where p(a) = p(nil) = 0, p(cons) = 2

e Ny ={F,L} and
e PP={L — il

L — cons(E,L),
E — a}

L(TG) is the language of linear lists of a's including

the empty list,
i.e. L(G1) = {nil, cons(a, nil), cons(a, cons(a, nil)), .. .}.

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

Example: Machine Grammar

o G = (Npm, X%, P, REG);

o Y. = {const, m, plus, REG}
where p(const) = 0; p(m) = 1, p(plus) = 2,

e N,, ={REG}

e P,,={ addmc: REG — plus(m(const), REG),
addm: REG — plus(m(REG),REG),
add : REG — plus(REG,REG),
ldmc: REG — m(const),
ldc : REG — const,

Id - REG — REG)

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 6

G, describes a subset of an instruction set of a simple processor,
rules are marked with names of instructions.

The first three instructions add

e the contents of a memory cell, whose address is given by a
constant,

e the contents of a memory cell, whose address is in a register,
resp.,

e the contents of a register

to the contents of a register and put the result into a register.

The last three rules describe load instructions, which load
e the contents of a memory cell, whose address is given by a
constant,

e a constant, resp.,

e the contents of a register

into a register.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 7

Example Derivations

Derivation tree

lus lus Derivation Tree
/ \ / N dd
addmc addmc addme / \
/ m REG REG ‘ Idmc add
addmc

| ldme 1d
const REG ‘
REG

const REG const

lus

/IUS /plus\ lus \
jug ldme us ldmc /p \ d /p lus _2dd /p hlg\ add
——= REG lus —="REq - = ~=—= REG
m/p \R /p \ e /p \ /p \ REG REG
|

const

REG REG REG REG

const const

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

Derivation Tree

An X —derivation tree for tree t € T'(XUN) according
to tree grammar G is a tree ¢» € T(P U N), such that

e Isiy &€ N, thenp = X =1t.

o Is ¢ & N, then ¢ = p(¢1,...,¢x) for a rule p :
X — s € P of type (X1,...,X;) — X, such that
t = s{z1/t1,...,xk/tr} and 1, are X;-derivation
trees for the ¢;.

(] W9

The generated language
LTG) = {t €¢ T(X) | 3w € T(P UN)
1 is S-derivation tree for t}.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 9

The Tree Analysis Problem

e An instance of the tree analysis problem consists
of an RTG G and a tree t.

e A solution consists of the set of all derivation trees
of ¢ according to G,

e A Tree Analyzer for G solves the tree analysis
problem for G and all its trees,

e A Tree Analyzer Generator generates a tree
analyzer for each RTG.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 10

Finite Tree Automata, Intuition

e Generalization of finite word automata to trees,

e Transitions (¢, a,q1,--.,qx), where
a € X, q state at node n labeled a,
q1, - - -, qy state at children of n,

e T[raversal strategies,

bottom up:
a /q a
q1 q qk ‘H/JN
top down:

N — 2N

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 11

Finite Tree Automata, Definition
Finite tree automaton (FTA)
A=(Q,%,0,QF), where
e (), finite set of states,

e (Qr C (), final states,
e Y, input alphabet (with arity),

¢ 6 CU,50Q x Xj x 7, transition relation.

e A is top down deterministic, if

— exactly one final state, and
— at most one transition (q,a,q1...,qx) € 9
for all a and q.

e A is bottom up deterministic, if
at most one transition (q,a,q1...qx) € 6 for all a
and all ¢q1,...,qx.
In this case, we write 0 as partial function:

5:UjZOEjXQj_>Q

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 12

Computation

e A annotates the nodes with states:
hence new alphabet ¥ x Q = {{(a,q) |a € X, q €

Q},
where p({a,q)) = p(a).

e g-computation ¢ of A on tree t = a(tq,...,tn):
a tree (a,q)(¢1,...,0m) € T(X X Q), where
¢; are gj-computations for the ¢;, 7 =1,...,m,

(q,a,q1 --.qm) is a transition.
e Is g € QF, then ¢ is accepting.

e The language L(T'A) consists of the trees with
accepting computations.

e A state resp. transition is superfluous if it does not
occur in any accepting computation.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 13

Example Computation

DFTA Ab — (Qb) Eb) 567 QF,b) with

states (Jp = {Qea qo},
alphabet ¥ o = {c} and X 3 = {a},
final states Qrp = {qe}
transitions: 6, = { (qo,¢)
(Ges @, 90, Go)
(40> @, ge, o)
(q a,qo,q e)
(Ges @, Ge, Ge) }

Accepts trees with even number of ¢'s.

Tree and g.—computation

@ (@, ge)

/ \ </> \<)

¢ a ¢, do a, o
/ \ (/> (¢, q0)
a ¢ a, ge ¢, o

N

¢ ¢ (¢, q0) (¢, q0)

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 14

Determinism — Non—determinism

e Bottom up NFTAs and Top down NFTAs are
equivalent,

e Bottom up DFTAs and Top down DFTAs are not
equivalent;
example language cannot be recognized by top down
DFTA.

e NFTAs are equivalent to bottom up DFTAs
(powerset construction).

(Bottom up) DFTA:

e At most one computation for each tree,
e At most one state at each node,

e § extended to a partial function ¢ : T'(X) — @ by:
d(t) =6(a,6(t1)...0(tg)), if t =al(ty, ..., tr).

e §(t) = q iff there is a g—computation for %.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 15

Generating Pattern Matchers

Be 7 a linear pattern in B(XUV). The FTA A-
recognizes whether 7 matches a given input tree.

Intuitively: If a pattern matches a subtree there is
a region near the root of the tree where the pattern
‘covers’ the subtree precisely, i.e. a region where
the operators of the subtree correspond precisely to
the operators of the pattern. Outside this region
A takes an unspecific state L.

We ignore the numbering of variables and replace
them by L, i.e. suppose that 7 € B(X U {L}).

A, = (QT7Z75T7QTF)1 where QT — {3 |
s subtree of T} U{L}, Q,r = {7} and J;:

- (L,a,L...1)€d;
—-if s € @, and s = a(sy,...,sg), then
(s,a,81...8k) € Or.

A g-computation of A corresponds to a g-derivation
tree.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 16

Generating Tree Parsers

The generation (and the explanation) process:

Input: G
1. Generate NFTA Ag,

2. Apply powerset construction to obtain DFTA P(G).

Later: Consider variant with costs.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 17

Acq, Definition
Ag = (Qg,%,0a,{S5}), where

e Qo =NU{s |I(X — s) € P,
where s’ is proper subpattern of s}.

e Transition relation dg: transitions of the forms
{(s,a,s81...5,) | s=a(s1,...,s,) € Qg} and
{(X,a,s1...8;) | I(X — s) € P and
s =a(s1,...,5k)}-

Problem with chain rules:

e Ax would have to “step on the spot” doing chain
reductions.
However, A has to consume at least one terminal
per step,

e Chain reductions are precomputed and integrated
into 0.
dg := {(s,a,s1...s;)|s=a(s1,...,s;) € Qg} U
{(X,a,81...8;) | (X = s) € P
JX —derivation tree for X'
and s = a(sy,...,8k)}

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 18

Example Ag

Ag, = (Qa,,; 26,,,9G,,, Qr.a,,) for Gy, has the state
set
Qg,, = {const, REG, m(const), m(REG)}

and the transitions

= { (const, const,¢€)
(REG, const,e€)
(REG, REG,¢)

(m(const), m, const)

(REG,m const)

(m (REG) m, REG)

(REG, plus, m(const) REQG)

(REG, plus, m(REG) REG)

(REG, plus, REG REG)}

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 19

Example Computation of Ag

(plus, REG) :addmc
addmc

(m, m(const)) (plus, REG) :addmc addme

(const, const)(m, m(const))(REG, REG) Rga

(const, const)

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

20

Properties

G RTG and t input tree.

e Exists X—derivation tree for ¢t according to G iff
exists an X—computation for ¢t in Ag.

In particular: L(G) = L(Ag)-

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 21

Principle of the Powerset Construction

Finite Word Automata:
old states g1, g2 and word w such that

(QO)w) I_}k\/_l (Q17€> and (QO7w) I_7\/_/' (QQ)‘C:)
—> 3 new state () such that ¢i,¢2 € @) and

5d(Qd7 ’UJ) — Q

Finite Tree Automata:
old states g1, g2 and tree ¢ such that d¢g; — and ¢ —
computations for { =— 4 new state B such that

qd1, 42 c b

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 22

Word automata:

new state P

new state Q such that 6(P,a) = Q

Tree automata:

new state B with (BaB1...Bj) € ép

new state By new state B L

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

23

Powerset Construction

Powerset automaton P(A) is built iteratively,
") and 65™ occur in computations on trees of height
<n-1.

Let A= (Q,X,0,QFr) be a NFTA.
lts powerset automaton is the DFTA

P(A) = (Qp, 5. 6y, Qp.r) where

e Q, =29

o Qpr:={Be€Qy,| BNQr # 0},

e states and transitions are computed in the iteration:
Qp = U0 I(,n) and 6p := U,,>¢ 5}()71)’ where:

- QY =0,

—Ben>0. Forae Sy and By,...,B, € Q™Y
let B :={¢q € Q | 3¢1 € B1,...,qx € By :
(q,a,q1...qx) € 6}

Is B # 0,
then B € Q'™ and (B,a, B ...By) € 55,

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 24

Example

The powerset automaton for Ag,, has the state set
QGm — {C.h) qd2, 43, Q4} where

di {REG}

g2 = {const, REG}

gs = {m(REG);}

q4 {m(const), REG, m(REG)}

and the transition function dg,,:

state operator children state(s)
Q1 REG €

q2 const €
43 m di
44 m q2
q1 plus g1 q
q1 plus qga q1
q1 plus g3 q1

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

Properties

1. For each t € T'(Y):

e Is §,(t) defined, then
d,(t) = {q | I3g—computation on t}.
e Is §,(t) undefined, then there is no ¢ € @ with a

g—computation of A for ¢.
e 5,(t)NN = {X' € N | 3X’'—derivation tree for t}.

3. For each state B € (), there exists a tree t, such
that 0,(¢) = B.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 26

Tree Automata with Costs

Machine grammars usually are ambiguous. Thus
among all possible derivation trees the cheapest
should be selected.

Required: cost measure for derivation trees.

Assume: rules of the grammar are annotated with
cost functions.

For each rule p of type (X1,...,Xr) — X: k-ary
function C(p) : INf — IN.

The cost measure C' can be extended to a function

which assigns a cost C(¥) to every derivation tree
v,

C is called monotonic, or additive, if C(p) is
monotonic, or of the form C(p) =c, + 21+ ... +
Ty, cp € INg, for all p € P.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 27

Tree Automata with Costs (c’ed)

e Examples:

— number of required clock cycles
— number of referenced memory cells

e Translation of the cost annotation C' of the grammar
G into a cost annotation C* of the associated
automaton Ag. Assumption: C' additive = cost of
each rule can be described by a constant, i.e. C':
P — IN. The cost function C* for the transitions
of AG:

- If 7 = (s,
then C*(7)

- if 7 = (X, a, 818k) then C*(7) corresponds
to the minimal cost of an X-derivation tree for
a(s1,...,8k)-

a, 31 .Sk) with s = a(s1,...,sk),

e Bottom-up computation: For each node (a, B) of
a computation ® of the subset automaton A, we
tabulate the costs ¢, and the transitions d, for all
q € B. Let t be the subtree of the input tree for
a node of ®. Then ¢, is the cost of a cheapest
g-computation of ¢ and d, is the corresponding

transition of A.
— Wilhelm /Maurer: Compiler Design, Chapter 11 — 28

Tree Automata with Costs: Example

Be G,, = (N, X, Ppy, REG) the tree grammar of the
previous examples with cost annotations:

addmc: REG — plus(m(const), REG) Cost:
addm: REG — plus(m(REG),REG) Cost:
add : REG — plus(REG,REG) Cost :
ldmc: REG — m(const) Cost :
ldc : REG — const Cost :
ld : REG — REG Cost :
The NFTA A = (Q, 3,9, Q) has the states
{const, REG, m(const), m(REG)} and the
transitions § = {
(const, const e) Cost : 0
(REG, const,e) Cost : 1
(REG, REG) Cost : 0
(m(const), m, const) Cost : 0
(REG,m, const) Cost : 2
(m (REG) m, REG) Cost : 0
(REG, plus, m(const) REG) Cost:3
(REG, plus, m(REG) REG) Cost:3
(REG, plus, REG REG) Cost : 2}

— Wilhelm /Maurer: Compiler Design, Chapter 11 —

29

o= DN N W W

Powerset Construction with Costs

Usually for machine grammars G,,, = (N, 2, P, S)
the cost differences of X derivation trees with minimal
costs are bounded by a constant. The finite many cost
differences can be directly integrated in the states of
the subset automaton A¢c = (Q¢, %, dc, Qcr). A cost
difference is assigned to each reachable state ¢ € @,
i.e. BC {(¢q,d) | qe @Nde INy}. For (¢,d) € B
the value d describes the cost difference between a
g-computation of A to a cheapest computation.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 30

Powerset Construction with Costs (c’ed)

Be A = (Q,%,0,Qr) a finite tree automaton and
C : 0 — INg a cost function assigning to each
transition from ¢ a cost in INg. The associated
(reduced) subset automaton with integrated cost is

Pc(A) = (Qc, X, 6c,Qcr) with Qor = {B € Q¢ |
(q,d) € BAq € Qr} whose states and transitions

are computed iteratively by Qc = U,,> gb), and

dc = U,>0 5((;n) where

o Q(O)

e Ben >0. Fora € X, and By,..., B} € ng_l):

B = {(Q7 d) | El(Qladl) S B17 SRR (C_Ikadk) S Bk
and 7 = (q,a,q1...qx) € 6 so that d = C(7) +
dy + ...+ di is minimal }.

If B # 0, norm(B) ¢ 81) and
(norm(B),a,B;1...By) € 55"’) where norm(B) =
{(q,(d—¢€)) | (¢,d) € B}, e =min{d | (¢q,d) € B}.

— Wilhelm /Maurer: Compiler Design, Chapter 11 — 31

