Exposing More Instruction-Level
Parallelism

Degree of instruction-level parallelism inside basic blocks is —
typically to 2.
The available parallelism in contemporary microprocessors grows.
Better exploitation by

— scheduling

— scheduling

Two kinds of speculation:

: based on hardware branch prediction. In case of mispredicted
branch forgetting or undoing effects of speculatively executed instructions.

. generating compensation code for "speculatively placed"
instructions.

— Recently: data and control speculation with to deal
with mispredictions (Intel 1A-64).
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Trace and Superblock Scheduling

Profile-directed scheduling of sequences of
(traces, superblocks)

Program annotated with : each branch of a
conditional associated with a relative frequency, or each basic
block annotated with its execution frequency.

Profile used to identify

. If a sequence of basic blocks is often executed one after
another, they should be optimized jointly.

Frequently taken paths (traces) are optimized of less
frequently taken traces.
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Trace Scheduling

e A IS a sequence of consecutive basic blocks that are
frequently executed one after another. A trace is never
extended across loop boundaries.

e The control flow graph of a procedure is into a
disjoint set of traces.

e The traces are formed in the order of
by repeatedly

— selecting the basic block with highest execution frequency that has
not been assigned to a trace yet as a seed of the new trace

— joining predecessors and successors to that trace in decreasing
frequency order until the frequency falls below a given threshold,
or a loop boundary is reached.
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A Partitioning into Traces

f
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Trace Scheduling

List scheduling of a leads to problems: the
semantics may be destroyed by

— code motion past from the trace

— code motion past to the trace
Consequence: has to be inserted

on off-trace paths.

Problems of compensation code:
— code growth
— exceptions raised by compensation code
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Moving Statements across
Conditional Branches

L X i a
f
f F- o' 1 !
] 1
¥
il
e X n ;
F 1
Erie i
|
erplan
§
ul
: :
— |
X

Embedded Systems 2002/2003 (c) Daniel Kastner.



Embedded Systems 2002/2003 (c) Daniel Kastner.



Branches and Joins
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Superblock Scheduling

e Goal: past side entrances by
. copying code starting with side
entrance and redirecting the branches.

e Superblock formation:
— starts with a trace
— produces a trace

e« Compensation code only for code motion
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Standard Algorithms for Code
Generation

Code selection by
Register allocation by

Instruction scheduling by

Optimal algorithms for
for expression trees and special
machine models.
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Code Selection
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Impact of Code Selection

struct {
unsi gned bl:1;
unsi gned b2: 1;
unsi gned b3: 1;

}os;

s.b3 = s.bl &&

3 cycles, 16 bytes

O cycles, 42 bytes
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Generating Code Selectors

Machine grammar: ;

terminals: operators from the program representation
non-terminals: represent storage resources

often ambiguous

each rule has associated costs

factorization, e.g. of addressing modes reduces size.
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Generating Code Selectors

A machine grammar enables IR trees for expressions
to be derived. The for an IR tree

represents one possibility of generating code for the
IR tree.

e The generated code selector
— parses intermediate representations of programs

— computes derivations according to the machine grammar,
each corresponding to a sequence of machine instructions

— has to select a cheapest derivation, corresponding to the
(locally) cheapest code sequence

— may compute costs in states or use dynamic programming
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