
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Code Generation: Integrated
Methods

• Integration of register allocation with instruction selection
for expression trees

• Restriction: Simple machine model:
– r general purpose registers R0, ..., Rr-1

– Two-address instructions:
• Ri := M[V] Load
• M[V] := Ri Store
• Ri := Ri op M[V] Compute
• Ri := Ri op Rj

• Two phases:
1. Computing register requirements
2. Generating code, allocating register and temporaries

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Example Tree

• Source:
– r := (a+b)-(c-(d+e))

• Tree: :=

+

-

-

+

r

a b c

d e

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Generated Code

• Given two registers R0 and R1, two possible code
sequences are:
R0 := M[a]
R0 := R0 + M[b]
R1 := M[d]
R1 := R1 + M[e]
M[t1]:= R1
R1 := M[c]
R1 := R1 - M[t1]
R0 := R0 - R1
M[f] := R0

R0 := M[c]
R1 := M[d]
R1 := R1 + M[e]
R0 := R0 – R1
R1 := M[a]
R1 := R1 + M[b]
R1 := R1 – R0
M[f] := R1

:=

+
-

-
+

r

a b c
d e

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Generated Code

• Left code:
– stores result for c - (d + e) in a temporary
– no register available

• Right code:
– evaluates c - (d + e) first (needs 2 registers)
– saves one instruction

:=

+
-

-
+

r

a b c
d e

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

The Algorithm

• Principle: Given tree t for expression e1 op e2
• t1 needs r1 registers,

t2 needs r2 registers
• Assume r ≥ r1 > r2:

– After evaluation of t1:
• r1-1 registers freed
• one holds the result

– t2 gets enough registers to evaluate, hence t can be evaluated in
r1 registers

• Assume r1=r2:
– t needs r1+1 registers to evaluate

• Assume one of t1 or t2 need more than r registers:
– spill to temporary required

op

t1 t2

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Labeling Phase

• Labels each node with its register needs

• Bottom up pass:
– Left leaves labeled with '1' have to be loaded into registers
– Right leaves labeled with '0' are used as operands
– Inner nodes:

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Example

:=

+

-

-

+

r

a b c

d e
1 1

1

1

1

0

0

2

2

2

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Generation Phase

• Generates instruction OP for operator op in op(t1,t2) after
generating code for t1 and t2

• Order of t1 and t2 depends on their register needs
• Upon execution of the generated Op-instruction: value of t1 in

register
• RSTACK: available registers, initially all registers.
• Before processing t, the result register for t is top(RSTACK)
• After processing t: all registers are available, top(RSTACK) is

result register for t
• TSTACK: available temporaries

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Register Allocation and Instruction
Selection by Dynamic Programming

• More complex architecture:
– r general purpose registers R0, ..., Rr-1

– Instruction formats:
• Ri := e Compute
• Ri := M[V] Load
• M[V] := Ri Store

where
• e term with registers and memory cells
• costs are associated with each instruction

– Goal: Generate cheapest instruction sequence using no more than r
registers

– Assume contiguous computation of subtrees → only one register
required to hold the result

– Use some instruction selection technique to compute cheapest
instruction sequence.

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Canonical Recursive Solution

• Assume e of instruction R1:=e matches tree t

• Subtrees of t corresponding to memory operands of e: they are
computed into memory and no registers are occupied after that

• Let e have k register operands: how to compute the
corresponding subtrees t1, ..., tk into these registers?

• Assume order i1, i2, ..., ik and j available registers

• ti1 has j registers available, ti2 has j-1, tk has j-k

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Canonical Recursive Solution
• If this fits (j-k-regneed(tik)>=0), add the minimal costs for

computing all subtrees in this way to the costs of e to yield
the minimal costs for this combination.

• If not enough registers are available, compute enough
subtrees into memory, and sum up costs like above.

• Doing this for all potential combinations recomputes the
costs for subtrees → exponential complexity.

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Dynamic Programming
• Convert top-down algorithm into bottom-up algorithm tabulating

partial solutions
• Associate cost vector C[0..r] with each node n

C[0]: cheapest costs for computing t/n into a temporary, C[i] cheapest
costs computing t/n into a register using i registers

• Compute cost vector at node n minimizing over all legal combinations
of
– one applicable instruction
– the cost vectors of the nodes under non-terminal nodes in the applied rule

• What is a legal combination for C[j],j>0?
– Any combination of generated code for subtrees not needing more than j

registers.

• Extract cheapest instruction sequence in a second pass.

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

Global Register Allocation

• 'Global' means Register allocation across whole procedures /
programs.

• Symbolic registers: hold intermediate results and modified
variables.

• Two symbolic registers collide, if their contents are live at the
same time.

• Colliding symbolic registers cannot be allocated to the same real
register.

• Goal: allocate the (unbounded number of) symbolic registers to
the fixed number of physical registers without collision.

• A definition of a symbolic register is the computation of an
intermediate result of the modification of a variable

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Global Register Allocation
• A use of a symbolic register is a reading access to the corresponding

variable or a use of the intermediate value.

• A symbolic register (a variable) r is live at a program point p, if there is
a program path from the entry node of the procedure to p that
contains a definition of r and there is a path from p to a use of r on
which r is not defined. The life range (life span) of a symbolic register r
is the set of program points at which r is live.

• Two life ranges of symbolic registers interfere, if one of them is
defined during the life range of the other. The register interference
graph is an undirected graph whose nodes are life ranges of symbolic
registers and whose

edges connect the nodes of interfering life ranges.

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Life Range and Register Interference

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Graph Coloring
• If k physical registers are available, the k-coloring problem

must be solved.
• NP-complete for k>2 -> Use heuristics
• Algorithm:

– If G contains a node n with degree < k:
• n and its neighbors can be colored with different colors
• Remove n from G, decreasing the size of G.
• G is k-colorable, if we arrive at the empty graph.

– If G is not empty and there exists no node with degree <k:
• use heuristics to select one node to remove (spilling)
• modify program inserting spills at definitions and loads at uses
• reflect changes in graph.

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Heuristics for Node Removal

• Degree of the node: high degree causes many deletions of
edges.

• Costs of spilling.

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

Instruction Scheduling

• Definition: Reordering an operation sequence in order to
exploit instruction-level parallelism and to minimize pipeline
stalls.
– Complexity: NP-complete.

• Terminology:
– An operation is a basic machine operation like add, sub, etc.
– An instruction is a set of machine operations that are issued

simultaneously (cf. VLIW).
Example:

r3=r1+r4, r3=r10+r14, r11=dm(i6,m6), r12=pm(i15,m15);

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

Instruction Scheduling

• Scope of instruction scheduling:

– local acyclic instruction scheduling: reordering operations
inside basic blocks. Standard technique: list scheduling.

– global acyclic instruction scheduling: reordering operations
across basic block boundaries but not across loop
boundaries. Standard technique: trace scheduling.

– cyclic instruction scheduling: reordering operations across
loop boundaries. Standard technique: software pipelining.

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

List Scheduling

SET data_ready;
int cycle=0;

Insert operations without predecessors in the data
dependence graph into the data_ready set.

while (data_ready ≠≠≠≠ ∅∅∅∅) do {
cycle = cycle+1;

Choose operations from data_ready in priority order and
insert them into the current cycle, until

data_ready is empty or the insertion leads to a
resource conflict.

Insert all operations into data_ready that can be
scheduled in the next cycle without violating data
dependences.

}

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

List Scheduling

• The priority in which operations from the data ready
set are chosen is determined by heuristics.

• Common heuristics: highest-level-first heuristics.
– The priority of each operation is the length of the longest

path in the data dependence graph starting from this
operation.

Embedded Systems 2002/2003 (c) Daniel Kästner. 22

List Scheduling

• Code quality:
– Standard list scheduling algorithm with highest-level-first

exceeds optimal number of instructions (clock cycles) by
8.29% (maximum deviation 21.05%) for Analog Devices
SHARC on standard DSP kernels, according to recent
studies.

– Standard list scheduling algorithm with highest-level first
heuristics exceeds optimal number of instructions (clock
cycles) by 7.29% (maximum deviation 42.85%) for Philips
TriMedia TM1000 on standard DSP kernels, according to
recent studies.

Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Exposing More Instruction-Level
Parallelism

• Degree of instruction-level parallelism inside basic blocks is limited –
typically to 2.

• The available parallelism in contemporary microprocessors grows.
Better exploitation by
– scheduling sequences of consecutive basic blocks
– scheduling entire loops
– speculation

• Two kinds of speculation:
– dynamic: based on hardware branch prediction. In case of mispredicted

branch forgetting or undoing effects of speculatively executed instructions.
– static: generating compensation code for "speculatively placed"

instructions.
– Recently: Static data and control speculation with hardware support to deal

with mispredictions (Intel IA-64).

