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Code Generation: Integrated 
Methods

• Integration of register allocation with instruction selection
for expression trees

• Restriction: Simple machine model:
– r general purpose registers R0, ..., Rr-1

– Two-address instructions:
• Ri := M[V] Load
• M[V] := Ri Store
• Ri := Ri op M[V] Compute
• Ri := Ri op Rj

• Two phases:
1. Computing register requirements
2. Generating code, allocating register and temporaries
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Example Tree

• Source:
– r := (a+b)-(c-(d+e))

• Tree: :=
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Generated Code

• Given two registers R0 and R1, two possible code 
sequences are:
R0   := M[a]
R0   := R0 + M[b]
R1   := M[d]
R1   := R1 + M[e]
M[t1]:= R1
R1   := M[c]
R1   := R1 - M[t1]
R0   := R0 - R1
M[f] := R0

R0   := M[c]
R1   := M[d]
R1   := R1 + M[e]
R0   := R0 – R1
R1   := M[a]
R1   := R1 + M[b]
R1   := R1 – R0
M[f] := R1
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Generated Code

• Left code:
– stores result for  c - (d + e) in a temporary
– no register available

• Right code:
– evaluates c - (d + e) first (needs 2 registers)
– saves one instruction
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The Algorithm

• Principle: Given tree t for expression e1 op e2
• t1 needs r1 registers, 

t2 needs r2 registers
• Assume r ≥ r1 > r2:

– After evaluation of t1:
• r1-1 registers freed
• one holds the result

– t2 gets enough registers to evaluate, hence t can be evaluated in 
r1 registers

• Assume r1=r2:
– t needs r1+1 registers to evaluate

• Assume one of t1 or t2 need more than r registers:
– spill to temporary required

op

t1 t2



Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Labeling Phase

• Labels each node with its register needs

• Bottom up pass:
– Left leaves labeled with '1' have to be loaded into registers
– Right leaves labeled with '0' are used as operands
– Inner nodes:
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Example
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Generation Phase

• Generates instruction OP for operator op in op(t1,t2) after 
generating code for t1 and t2

• Order of t1 and t2 depends on their register needs
• Upon execution of the generated Op-instruction: value of t1 in 

register
• RSTACK: available registers, initially all registers.
• Before processing t, the result register for t is top(RSTACK)
• After processing t: all registers are available, top(RSTACK) is 

result register for t
• TSTACK: available temporaries
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Register Allocation and Instruction 
Selection by Dynamic Programming

• More complex architecture:
– r general purpose registers R0, ..., Rr-1

– Instruction formats:
• Ri := e Compute
• Ri := M[V] Load
• M[V] := Ri Store

where
• e term with registers and memory cells
• costs are associated with each instruction

– Goal: Generate cheapest instruction sequence using no more than r 
registers

– Assume contiguous computation of subtrees → only one register 
required to hold the result

– Use some instruction selection technique to compute cheapest 
instruction sequence.
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Canonical Recursive Solution

• Assume e of instruction R1:=e matches tree t

• Subtrees of t corresponding to memory operands of e: they are 
computed into memory and no registers are occupied after that

• Let e have k register operands: how to compute the 
corresponding subtrees t1, ..., tk into these registers?

• Assume order i1, i2, ..., ik and j available registers

• ti1 has j registers available, ti2 has j-1, tk has j-k
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Canonical Recursive Solution
• If this fits (j-k-regneed(tik)>=0), add the minimal costs for 

computing all subtrees in this way to the costs of e to yield 
the minimal costs for this combination.

• If not enough registers are available, compute enough 
subtrees into memory, and sum up costs like above.

• Doing this for all potential combinations recomputes the 
costs for subtrees → exponential complexity.
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Dynamic Programming
• Convert top-down algorithm into bottom-up algorithm tabulating 

partial solutions
• Associate cost vector C[0..r] with each node n

C[0]: cheapest costs for computing t/n into a temporary, C[i] cheapest 
costs computing t/n into a register using i registers

• Compute cost vector at node n minimizing over all legal combinations 
of
– one applicable instruction
– the cost vectors of the nodes under non-terminal nodes in the applied rule

• What is a legal combination for C[j],j>0?
– Any combination of generated code for subtrees not needing more than j 

registers.

• Extract cheapest instruction sequence in a second pass.
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Global Register Allocation

• 'Global' means Register allocation across whole procedures / 
programs.

• Symbolic registers: hold intermediate results and modified 
variables.

• Two symbolic registers collide, if their contents are live at the 
same time.

• Colliding symbolic registers cannot be allocated to the same real 
register.

• Goal: allocate the (unbounded number of) symbolic registers to 
the fixed number of physical registers without collision.

• A definition of a symbolic register is the computation of an 
intermediate result of the modification of a variable



Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Global Register Allocation
• A use of a symbolic register is a reading access to the corresponding

variable or a use of the intermediate value.

• A symbolic register (a variable) r is live at a program point p, if there is 
a program path from the entry node of the procedure to p that 
contains a definition of r and there is a path from p to a use of r on 
which r is not defined. The life range (life span) of a symbolic register r
is the set of program points at which r is live. 

• Two life ranges of symbolic registers interfere, if one of them is 
defined during the life range of the other. The register interference 
graph is an undirected graph whose nodes are life ranges of symbolic 
registers and whose

edges connect the nodes of interfering life ranges.
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Life Range and Register Interference
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Graph Coloring
• If k physical registers are available, the k-coloring problem

must be solved. 
• NP-complete for k>2 -> Use heuristics
• Algorithm:

– If G contains a node n with degree < k:
• n and its neighbors can be colored with different colors
• Remove n from G, decreasing the size of G.
• G is k-colorable, if we arrive at the empty graph.

– If G is not empty and there exists no node with degree <k:
• use heuristics to select one node to remove (spilling)
• modify program inserting spills at definitions and loads at uses
• reflect changes in graph.
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Heuristics for Node Removal

• Degree of the node: high degree causes many deletions of 
edges.

• Costs of spilling.
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Instruction Scheduling

• Definition: Reordering an operation sequence in order to 
exploit instruction-level parallelism and to minimize pipeline 
stalls. 
– Complexity: NP-complete.

• Terminology: 
– An operation is a basic machine operation like add, sub, etc.
– An instruction is a set of machine operations that are issued 

simultaneously (cf. VLIW).
Example: 

r3=r1+r4, r3=r10+r14, r11=dm(i6,m6), r12=pm(i15,m15);
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Instruction Scheduling

• Scope of instruction scheduling:

– local acyclic instruction scheduling: reordering operations 
inside basic blocks. Standard technique: list scheduling.

– global acyclic instruction scheduling: reordering operations 
across basic block boundaries but not across loop 
boundaries. Standard technique: trace scheduling.

– cyclic instruction scheduling: reordering operations across 
loop boundaries. Standard technique: software pipelining.
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List Scheduling

SET data_ready;
int cycle=0;

Insert operations without predecessors in the data 
dependence graph into the data_ready set.

while (data_ready ≠≠≠≠ ∅∅∅∅ ) do {
cycle = cycle+1;

Choose operations from data_ready in priority order and 
insert them into the current cycle, until 

data_ready is empty or the insertion leads to a 
resource conflict.

Insert all operations into data_ready that can be 
scheduled in the next cycle without violating data 
dependences.

}
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List Scheduling

• The priority in which operations from the data ready 
set are chosen is determined by heuristics.

• Common heuristics: highest-level-first heuristics. 
– The priority of each operation is the length of the longest 

path in the data dependence graph starting from this 
operation.
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List Scheduling

• Code quality:
– Standard list scheduling algorithm with highest-level-first 

exceeds optimal number of instructions (clock cycles) by
8.29% (maximum deviation 21.05%) for Analog Devices 
SHARC on standard DSP kernels, according to recent 
studies.

– Standard list scheduling algorithm with highest-level first 
heuristics exceeds optimal number of instructions (clock 
cycles) by 7.29% (maximum deviation 42.85%) for Philips 
TriMedia TM1000 on standard DSP kernels, according to 
recent studies.
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Exposing More Instruction-Level 
Parallelism

• Degree of instruction-level parallelism inside basic blocks is limited –
typically to 2.

• The available parallelism in contemporary microprocessors grows.
Better exploitation by
– scheduling sequences of consecutive basic blocks
– scheduling entire loops
– speculation

• Two kinds of speculation:
– dynamic: based on hardware branch prediction. In case of mispredicted 

branch forgetting or undoing effects of speculatively executed instructions.
– static: generating compensation code for "speculatively placed" 

instructions.
– Recently: Static data and control speculation with hardware support to deal 

with mispredictions (Intel IA-64).


