
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Characteristics of DSPs

• Multiply-accumulate units: multiplication and
accumulation in a single clock cycle (vector products,
digital filters, correlation, fourier transforms, etc)

• Multiple-access memory architectures for high
bandwidth between processor and memory
– Goal: throughput of one operation per clock cycle.
– Required: several memory accesses per clock cycle.
– Separate data and program memory space: harvard

architecture.
– Multiple memory banks
– Arithmetic operations in parallel to memory accesses. But

often irregular restrictions.

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Characteristics of DSPs

• Specialized addressing modes:
– linear addressing mode: addition/subtraction of offset

to/from base address, often with auto-modify (pre-/post
increment/decrement)

– circular addressing: address results from incrementing an
address register and taking the remainder of the division of
this value by a constant.

– bit-reverse addressing: carry bits are propagated in bit-
reverse order (-> FFT)

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Characteristics of DSPs

• Branches depending on control bits: early branch
detection allowing for small interlock penalties in
combination with typically short pipelines

• Residual control: execution behavior depends on
specific control bits set by a preceding instruction.

• Predicated/guarded execution: instruction execution
depends on the value of explicitly specified bit values
or registers.

• Increasingly: SIMD instructions for packed arithmetic
(multimedia applications).

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Characteristics of DSPs

• Hardware loops / zero overhead loops: no explicit loop counter
increment/decrement, no loop condition check, no branch back
to top of loop

• Restricted interconnectivity between registers and functional
units -> more severe phase coupling problems.

• Strongly encoded instruction formats: a throughput of one
instruction per clock cycle requires one instruction to be fetched
per cycle. Thus each instruction has to fit in one memory word -
> reduction of bit width of the instruction.

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Characteristics of DSPs

Techniques for reducing the instruction width:
– Reducing the number of addressing modes. Example:

immediate memory accesses restricted to a small set of
instructions.

– Restricting the set of source and destination operands: short
addressing modes for elements of certain register groups,
implied operands.

– Mode bits, for example a single shift instruction that
performs arithmetic or logical shifts depending on a control
bit in a mode register.

– Consequence: Increased irregularity of the instruction set –
but reduction of processor and system cost and increased
individual instruction performance.

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Characteristics of DSPs

• Overall consequence:

– Irregularity

– Severe phase coupling problems during code generation

– Need for specialized algorithms

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Next Lectures

Compiler Construction and Code Generation

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Repetition: Compiler Structure

Source (Text)

Syntax Analysis

Tokenized Program

Syntax Tree

Decorated Syntax Tree

Intermediate Representation

Lexical Analysis

Semantic Analysis

High-Level Optimizations

Code Generation

Machine Program

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Middle End: High-Level
Optimizations

• High-level optimizations are usually termed machine-
independent optimizations. They comprise e.g. dead code
elimination, constant propagation, constant folding,
common subexpression elimination, loop unrolling, loop
fusion, software pipelining,...

• BUT: Many machine-independent optimizitations are not
machine-independent at all. For example:
– constant folding may lead to large immediate constants resulting in

code growth or preventing instruction-level parallelism
– common subexpression elimination may increase the register

pressure and cause problems if few registers are available
– loop unrolling may cause the instruction cache to overflow

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Back End: Code Selection, Register Allocation,
and Instruction Scheduling

c=a+b;
r1aa
r2ba
r3ca

load adr(a)

add

load adr(b)

store adr(c)

Code selection

Instruction scheduling
r1=load adr(a)

r3=add r1, r2

r2=load adr(b)

store adr(c), r3

r1=load adr(a) || r2=load adr(b)

store adr(c), r3

r3=add r1, r2

Register allocation

a

cb

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Main Tasks of Code Generation (1)

• Code selection: Map the intermediate representation to a
semantically equivalent sequence of machine operations that is
as efficient as possible.

• Register allocation: Map the values of the intermediate
representation to physical registers in order to minimize the
number of memory references during program execution.
– Register allocation proper: Decide which variables and

expressions of the IR are mapped to registers and which ones are
kept in memory.

– Register assignment: Determine the physical registers that are
used to store the values that have been previously selected to
reside in registers.

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Main Tasks of Code Generation (2)

• Instruction scheduling:
Reorder the produced operation stream in order to
minimize pipeline stalls and exploit the available
instruction-level parallelism.

• Resource allocation / functional unit binding:
Bind operations to machine resources, e.g. functional
units or buses.

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

The Code Generation Problem

• Instruction scheduling, register allocation and code
selection are NP complete problems.

• In classical approaches they are addressed by
heuristic methods in separate phases.

• Unfortunately, all the code generation phases are
interdependent, i.e. decisions made in one phase
may impose restrictions to the other phases.

• Thus: often suboptimal combination of suboptimal
partial results.

• Moreover: specific/irregular hardware features not
well covered by standard code generation methods.

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Calling Conventions
• Calling conventions specify how the procedure stack is built and how to

pass parameters between functions and procedures.

• Calling conventions have to be respected during code transformations.
Optimization opportunities can only be exploited based on
interprocedural analyses of the complete ICFG.

• Calling conventions of the GHS TriCore C compiler (excerpt):
– Up to 4 32-bit data arguments are passed in registers D4-D7.
– Up to 2 64-bit data arguments are passed in register pairs E4 and E6.
– Up to 4 32-bit address arguments are passed in registers A4-A7.
– Arguments that cannot be passed in registers are passed on the stack.
– 32-bit data (address) return values are returned in D2 (A2); 64-bit data

values in E2 (D2/D3).

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Calling Conventions (c'ed)

– Caller-saved registers: caller is responsible for saving these registers
on the stac and for restoring them after the callee has returned.

– Callee-saved registers: callee is responsible for saving these registers
upon procedure entry and for restoring them before returning.

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Typical Stack Frame Layout

• Static link: fp of the static predecessor
(variable accesses)

• Dynamic link: fp of dynamic
predecessor, i.e. the fp-value that has
to be restored when returning from
the current function.

• Return address: address of the next
instruction to be executed after return
from the current function.

• Usually stack frames are arranged in
memory so that the beginning is at a
higher address than the end of it. This
way offsets from the stack pointer are
always non-negative.

Static Link

Dynamic Link (old fp)

Return Address

Parameters

Local variables

Local stack for intermediate
results, caller-saved

registers, etc

Callee-saved registers

fp-4

fp-8

fp-12
fp-16

fp-P

fp-C-4

fp-L

sp+R

sp

fp-P-4

fp-C

Function return valuefp

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Program Representations

• Abstract Syntax Tree (AST)

• Static Single Assignment (SSA)

• Control Flow Graph (CFG), Call Graph (CG) and
Interprocedural Control Flow Graph (ICFG)

• Data Dependence Graph (DDG)

• Low-Level Intermediate Representation:
Abstract Machine Code / Register Transfer Languages

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

High-Level and Low-Level IRs

• High-level intermediate representation: close to source level.
Typically centered around source language constructs.
Constructs: implicit memory addressing, expression trees,
for- while-, switch-statements, etc.

• Low-level intermediate representation: close to machine
level. Typically centered around basic entities that specify
properties of machine operations.

• Most program representations can be defined at high-level
and at low-level.

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

IR Levels

t1 = a[i][j+3]; t1 = addr(a);
t2 = i*20;
t3 = j+3;
t4 = t2+t3;
t5 = 4*t4;
t6 = t1+t5;
t7 = *t6;

Assumption: Input language C, a declared as int a[10][20];

High-Level Medium-Level Low-Level

v1 = fp-216;
v2 = [fp-4];
v3 = v2*20;
v4 = [fp-8];
v5 = v4+3;
v6 = v3+v5;
v7 = 4*v6;
v8 = [v1+v7];

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

IR Levels

• High-level IRs:
– abstract syntax tree
! control flow graph and data dependence graph used for array

dependence analysis and high-level code transformations

• Low-level IRs:
– abstract machine code (medium-level)
– direct representation of target machine instructions
– register transfer language (machine-independent

representation for machine-specific instructions)
! control flow graph and data dependence graph used for

machine-level dependence analysis and low-level code
transformations

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Decorated Abstract Syntax Tree

id iconst id id iconst id iconst

plus assign assign

grt

if

abstract syntax tree

E

T

F

iconst

E

T

F

id

E

T

F

id + then id := iconst else id := iconstcmp

Stat

Ass

E

T

F

Stat

Ass

E

T

F

ifstat

if

Cond

concrete syntax tree

Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Call Graph

• There is a node for the main procedure – being the entry
node of the program – and a node for each procedure or
function declared in the program.

• The nodes are marked with the procedure names.

• There is an edge between the node for a procedure p to
the node of procedure q, if there is a call to q inside of p.

Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Control Flow Graph
• The control flow graph of a procedure is a directed graph

GC=(NC,EC,nA,nΩ) with node and edge labels. For each instruction i of
the procedure there is a node ni that is marked by i. The edges (n,m,λ)
denote the control flow of the procedure: λ ∈ {T,F,ε} is the edge label.
The nodes for composed statements are shown on the next slide.
Edges belonging to unconditional branches lead from the node of the
branch to the branch destination. The node nA is the uniquely
determined entry point in the procedure; it belongs to the first
instruction to be executed. nΩ denotes the end node that is reached by
any path through the control flow graph.

• Nodes with more than one predecessor are called joins and nodes with
more than one successor are called forks.

Embedded Systems 2002/2003 (c) Daniel Kästner. 24

Control Flow Graph – Composed
Statements

cfg (while B do S od) =

cfg (S)

B F

T

cfg (if B then S else S fi) =1 2

BT F

cfg (S)1 cfg (S)2

cfg (S)1

cfg (S)2

cfg (S ;S) =1 2

Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Basic Block Graph

• A basic block in a control flow graph is a path of maximal length
which has no joins except at the beginning and no forks except
possibly at the end.

• The basic block graph GB=(NB,EB,bA,bΩ) of a control flow graph
GC=(NC,EC,nA,nΩ) is formed from GC by combining each basic
block into a node. Edges of GC leading into the first node of a
basic block lead to the node of that basic block in GB. Edges of
GC leaving the last node of a basic block lead out of the node of
that basic block in GB. The node bA denotes the uniquely
determined entry block of the procedure; bΩ denotes the exit
block that is reached at the end of any path through the
procedure.

Embedded Systems 2002/2003 (c) Daniel Kästner. 26

Interprocedural Control Flow
Graph

The interprocedural control flow graph consists of three parts:

1. Call graph whose nodes are meta-nodes containing basic
block graphs.

2. Basic block graph for each procedure in the program.

3. Ordered list of instructions for each block in the basic block
graph of each procedure.

The ICFG describes the control flow of a program completely.

Embedded Systems 2002/2003 (c) Daniel Kästner. 27

Control Dependence Graph

• Operation i dominates an operation j, if i appears on every
path from the entry node of the procedure to j. Each operation
dominates itself.

• Operation j postdominates i, if j appears on every path from i
to the exit node of the procedure.

• Given a control flow graph GC=(NC,EC,nA,nΩ) . Node m ∈ NC is
control dependent on n ∈ NC if
– (n,a) is an edge of the control flow graph
– m does not postdominate n
– there is a path from n, a, ..., m so that m postdominates all nodes

between n and m.
• The dominance frontier of a node x of the CFG (or BBG) is the

set of all nodes y so that x dominates an immediate
predecessor of y, but not y itself.

Embedded Systems 2002/2003 (c) Daniel Kästner. 28

Control Dependence

D

F G A

E

Dominator Tree Postdominator Tree

Control Dependence Graph

{D} is dominance frontier of B, C, F, G

Control Flow Graph

A

B C

D

E

F G

A

B C D

EGF B C

A

C F GB

D

E

Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Data Dependence Graph
Low Level View

• Let GC be a control flow graph. It data dependence graph is a directed
graph GD=(ND,ED) with node and edge labels whose nodes are labeled
by the operations of the procedure. An edge runs from the node of an
operation i to the node of an operation j, if i has to be executed before
j, i.e. if there is a path from i to j in the control flow graph and if
– i defines a resource r, j uses it and the path from i to j does not contain

other definitions of r (true dependence, RAW): (i,j,r,t) ∈ ED
– i uses a resource, j defines it and the path from i to j does not contain any

definitions of r (anti dependence, WAR): (i,j,r,a) ∈ ED
– i and j define the same resource and the path from i to j does not contain

any uses nor definitions of r (output dependence, WAW): (i,j,r,o) ∈ ED.

(1) r1 = r2*r3;

(2) r5 = r1+r1;
(1, 2, r1, t)

Embedded Systems 2002/2003 (c) Daniel Kästner. 30

Data Dependence Graph
High Level View

• Iteration distance: Number of loop iterations between two dependent
instruction instances (0 for intra-iteration dependences).

• Delay: Minimal number of clock cycles between the issuing of two
dependent operation instances.

• Edges of the DDG are labeled with (itDist, delay,type).
• The delay for a dependence a → b depends on the latencies of a and b

and the type of the dependence:
– true dependence (def-use): latency(a)
– anti dependence (use-def): 1 - latency(b)
– output dependence (def-def): 1 + latency(a) - latency(b)

for (i=2; i<100; i++) {
(a) A[i]=B[i]+C[i];

(b) D[i]=A[i-2];
}

(a, b, 2, 1, t)

