The Constructive Semantics

- Logical correctness is not in accordance with the intention of the language, ie with its intuitive semantics and with the intended sequential character of test statements.
- Example:

```
module P10:
present 0 then nothing end; emit 0
```

is logically correct, but the information that O is present flows backwards across the sequencing operator ; contradicting the basic intuition about sequential execution.

• Aside from the explicit concurrency || all Esterel statements are sequential.

The Constructive Semantics

- Idea: do not check assumptions about signal statuses, but propagate facts about control flow and signal statuses. Selfjustification is replaced by fact-to-fact propagation.
- Accounts for programmer's natural way of thinking: in terms of cause and effect.
- Three-valued logic for signals: present, absent, unknown.
- In each instant the statuses of the input signals are given by the environment and the statuses of the other signals are initially set to unknown.

The Constructive Semantics

• Three equivalent presentations:

- Constructive behavioral semantics
 - Derived from the logical behavioral semantics
 - Constructive restrictions are added to the logical coherence rule
- Constructive operational semantics
 - Based on term rewriting rules defining microstep sequences
 - Simplest way of defining an efficient interpreter
- Circuit semantics
 - Translation of program into constructive circuits
 - Core of the Esterel v5 compiler.

- Logical coherence semantics augmented by reasoning about what a program must or cannot do, both predicates being disjoint and defined in a constructive way.
- The must predicate determines which signals are present and which statements are executed.
- The cannot predicate determines when signals are absent and it serves in pruning out false execution paths.
- A program is accepted as constructive if and only if fact propagation using the must and cannot predicates suffices in establishing presence or absence of all signals.

- Logical Coherence Law:
 - A signal S is present in an instant iff an emit S statement is executed in this instant.
- Constructive Coherence Law:
 - A signal S is present iff an emit S statement must be executed.
 - A signal S is absent iff an emit S statement cannot be executed.

- A signal can have three statuses:
 - +: known to be present
 - –: known to be absent
 - ⊥: yet unknown
- must and cannot predicates are defined by structural induction on statements.
- *p*; *q*
 - Must (resp. can) execute q if p must (resp. can) terminate
- present *S* then *p* else *q* end
 - S known to be present -> Test behaves as p
 - S known to be absent -> Test behaves as q
 - S yet unknown -> Test can do whatever p or q can do; there is nothing the test must do.

Example 1

module P1: input I; output 0; signal S1, S2 in present I then emit S1 end (i1) || present S1 else emit S2 end (i2) || present S2 then emit 0 end (i3) end signal end module

- If I is present:
 - i1 must take its then branch, emit S1 and terminate \rightarrow S1 present
 - i2 must take its (empty) then branch and cannot take its else branch → emit S2 cannot be executed, S2 cannot be emitted → S2 absent
 - i3 cannot take its then branch \rightarrow O cannot be emitted and is absent.
- If I is absent:
 - i1 cannot take its then branch \rightarrow emit S1 cannot be executed \rightarrow S1 absent
 - i2 must take its then branch \rightarrow emit S2 must be executed \rightarrow S2 present.
 - i3 must take its then branch \rightarrow emit 0 must be executed \rightarrow 0 present.

Example 2 – Part 1

- Analyze what signal S must do with status \perp for O.
 - Analyze body with status \perp for O and S.
 - S must be emitted.
 - Thus: redo the analysis with status \perp for O and + for S.
 - Status of O is unknown: there is nothing that the present statement must do. Progress can only be made by analyzing what we cannot do in the branches of the test.
 - The *then* branch contains a present S test. Since S is known to be present, we cannot take the implicit *else* branch. Since the *then* branch is a pause statement it cannot terminate. Therefore the emit O statement cannot be executed and O cannot be emitted.
 - As a consequence O must be set absent and the analysis must be redone with status – for O.

Embedded Systems 2002/2003 (c) Daniel Kästner.

module P2: output 0; signal S in emit S; present 0 then present S then pause end; emit 0 end end signal

Example 2 – Part 2

module P2: output 0; signal S in emit S; present 0 then present S then pause end; emit 0 end end signal

- Analyze what signal S must do with status for O.
 - The implicit else branch of the present O test that terminates execution must be taken.
 - The program is constructive since we have fully determined the signal statuses.

- signal *S* in *p* end
 - Can: recursively analyze p with status \perp for S
 - Must:
 - Assume we already know that we must execute the declaration in some signal context E
 - Must compute final status of *S* to determine signal context of *p*
 - First analyze p in E augmented by setting the unknown status \perp for S
 - If *S* must be emitted:
 - propagate this information by reanalyzing *p* in *E* with *S* present
 - This may generate more information about the other signals
 - If S cannot be emitted:
 - reanalyze p in E with S absent

- Let *S* be a set of signals. An event *E* is a mapping $E: S \to B_{\perp} = \{+, -, \bot\}$ which assigns a status from B_{\perp} to all signals in *S*.
- Notation:
 - $S^{+}: E(S) = +$

$$- s^{-}: E(s) = -$$

- $E \subseteq E'$: $s + in E \Rightarrow s + in E'$
- Singleton event $\{s^+\}$: $\{s^+\}(s) = +$ and $\{s^+\}(s') = -$ forall $s' \neq s$
- Let an event *E* for a set *S* be given, a signal *s* possibly not in *S* and a status *b* in *B*_⊥. Then *E* * *s* ^b is an event for the set *S* ∪{*s*} where *E***s* ^b (*s*) = *b* and *E***s* ^b (*s*') = *E* (*s*') ∀ *s* ' ≠ *s*.

- The statements nothing, pause and exit are represented by completion codes *k* >= 0:
 - nothing is encoded by 0
 - pause is encoded by 1
 - exit T is encoded by 2, if the directly enclosing trap declaration is that of T and n + 2 if n trap declarations have to be traversed before reaching that of T.
- To handle trap propagation we define two operators

$$\downarrow k = \begin{cases} 0, & \text{if } k = 0 \text{ or } k = 2\\ 1, & \text{if } k = 1\\ k - 1, & \text{if } k > 2 \end{cases}$$

$$\uparrow k = \begin{cases} k, & \text{if } k = 0 \text{ or } k = 2\\ k + 1, & \text{if } k > 1 \end{cases}$$

• Given a program *P* with body *p* and an input event *I*. A reaction of the program is given by a behavioral transition of the form

$$P \xrightarrow{O} P'$$

where O is an output event and the resulting program P' is the new state reached by P after the reaction. P' is called the derivative of P by the reaction.

• The statement transition relation has the form

$$p \xrightarrow{E',k}{E} p'$$

where

- E is an event that defines the status of all signals in the scope of p
- E' is an event composed of all signals emitted by p in the reaction, k is the completion code returned.

The statement *p* ' is called the derivative of *p* by the reaction.

$$P \xrightarrow{O}_{l} P' \iff p \xrightarrow{O,k}_{l \cup O} p'$$
 for some k

$$Max(K,L) = \begin{cases} \emptyset & \text{if } K = \emptyset \text{ or } L = \emptyset \\ \{\max\{k,l\}\}, & \text{for } k \in K, l \in L \end{cases}$$

• The Must function determines what must be done in a reaction

$$P \xrightarrow{o}_{I} P'$$

Must(p, E) = $\langle S, K \rangle$

where

•

- E is an event,
- S is the set of signals that p must emit
- K is the set of completion codes that p must return.
- We write

 $Must(p, E) = \langle S, K \rangle =: \langle Must_{s}(p, E), Must_{k}(p, E) \rangle.$

• The function $Cannot^m(p, E)$ is used to prune out false paths.

Cannot^m(p, E) = $\langle Cannot^m_s(p, E), Cannot^m_k(p, E) \rangle = \langle S, K \rangle$

- *S* is the set of signals that *p* cannot emit
- *K* is the set of completion codes that *p* cannot exit with when the input event is *E*.
- m ∈ {+, ⊥} indicates whether it is known that the statement p must be executed in the event E. The case m = – will never occur since Cannot will only be called for potentially executable statements.
- In the following, we will use Can^m(p, E) since it is easier to be defined formally; from this, Cannot^m(p, E) can be determined by componentwise complementation.

• Must and Can^m are defined by structural induction over the kernel statements.

 $Must(k, E) = Can^{m}(k, E) = \langle \emptyset, \{k\} \rangle$ $Must(emit \ S, E) = Can^{m}(emit \ S, E) = \langle \{s\}, \{0\} \rangle$ $[Must(p,E), if s^+ \in E]$ $Must(present \ s \ then \ p \ else \ q \ end, E) = \begin{cases} Must(q, E), \ if \ s^- \in E \\ \langle \emptyset, \emptyset \rangle, & if \ s^\perp \in E \end{cases}$ $Can^{m}(present \ s \ then \ p \ else \ q \ end, E) = \begin{cases} Can^{m}(p, E), & \text{if } \ s^{+} \in E \\ Can^{m}(q, E), & \text{if } \ s^{-} \in E \\ Can^{\perp}(p, E) \cup Can^{\perp}(q, E), & \text{if } \ s^{\perp} \in E \end{cases}$ $Must(suspend \ p \ when \ s, E) = Must(p, E)$ $Can^{m}(suspend \ p \ when \ s, E) = Can^{m}(p, E)$

$$Must(p;q,E) = \begin{cases} Must(p,E), & \text{if } Must_k(p,E) \neq \{0\} \\ \left\langle Must_s(p,E) \cup Must_s(q,E), Must_k(q,E) \right\rangle, & \text{if } Must_k(p,E) = \{0\} \end{cases}$$

We analyze q only if p must terminate in which case the completion code 0 of p is discarded.

$$Can^{m}(p;q,E) = \begin{cases} Can^{m}(p,E), & \text{if } 0 \notin Can_{k}^{m}(p,E) \\ \left\langle Can_{s}^{m}(p,E) \cup Can_{s}^{m'}(q,E), Can_{k}^{m}(p,E) \setminus \{0\} \cup Can_{k}^{m'}(q,E) \right\rangle \\ & \text{if } 0 \in Can_{k}^{m}(p,E) \text{ with } m'=+ \text{ if } m=+ \\ & \text{and } 0 \in Must_{k}(p,E) \\ & \text{ or } \text{ if } 0 \in Can_{k}^{m}(p,E) \text{ with } m'=\perp \text{ otherwise} \end{cases}$$

We analyze q with argument m' = + if m = + and if p must terminate, with argument $m' = \perp$ otherwise.

Must(loop p end, E) = Must(p, E) $Can^{m}(loop p end, E) = Can^{m}(p, E)$ $Must(p || q, E) = \langle Must_{s}(p, E) \cup Must_{s}(q, E), Max(Must_{k}(p, E), Must_{k}(q, E)) \rangle$ $Can^{m}(p || q, E) = \langle Can_{s}^{m}(p, E) \cup Can_{s}^{m}(q, E), Max(Can_{k}^{m}(p, E), Can_{k}^{m}(q, E)) \rangle$ • The Max operation e.g. ensures that || cannot

 The Max operation e.g. ensures that || cannot terminate if one of its branches cannot do so.

$$Must(trap T in p end, E) = Must(\{\uparrow p\})$$
$$Must(\{q\}, E) = \left\langle Must_{s}(q, E), \downarrow Must_{k}(q, E) \right\rangle$$
$$Must(\uparrow q, E) = \left\langle Must_{s}(q, E), \uparrow Must_{k}(q, E) \right\rangle$$

$$Can^{m}(trap T in p end, E) = Can^{m}(\{\uparrow p\})$$
$$Can^{m}(\{q\}, E) = \left\langle Can_{s}^{m}(q, E), \downarrow Can_{k}^{m}(q, E) \right\rangle$$
$$Can^{m}(\uparrow q, E) = \left\langle Can_{s}^{m}(q, E), \uparrow Can_{k}^{m}(q, E) \right\rangle$$

$$Must(signal \ s \ in \ p, E) = \begin{cases} Must(p, E \ast s^{+}) \setminus \{s\}, & \text{if } s \in Must_{s}(p, E \ast s^{\perp}) \\ Must(p, E \ast s^{-}) \setminus \{s\}, & \text{if } s \notin Can_{s}^{+}(p, E \ast s^{\perp}) \\ Must(p, E \ast s^{\perp}) \setminus \{s\}, & \text{otherwise} \end{cases}$$

$$Can^{m}(signal \ s \ in \ p, E) = \begin{cases} Can^{+}(p, E \ast s^{+}) \setminus \{s\}, & \text{if } m = + \text{ and } s \in Must_{s}(p, E \ast s^{\perp}) \\ Can^{m}(p, E \ast s^{-}) \setminus \{s\}, & \text{if } s \notin Can_{s}^{+}(p, E \ast s^{\perp}) \\ Can_{s}^{m}(p, E \ast s^{\perp}) \setminus \{s\}, & \text{otherwise} \end{cases}$$

- We first analyze the body p with status \perp for s with the same m argument.
- If m=+ and we find that the signal must be emitted we reanalyze p with status + for s.
- For both m=+ and $m=\perp$ if the signal cannot be emitted we reanalyze p with status and with the same m.
- Otherwise we return the result of the analysis of p with status \perp for s.
- Note that the signal status can be set to + only if *m*=+. This is necessary to avoid speculative computations.

- The constructiveness analysis involves many recomputations: Once a signal status has been set, the body of its declaration (the whole program for an output) has to be reanalyzed, this way re-establishing many facts that are already known.
- The goal of the operational and circuit semantics is to avoid recomputing known facts.

Example

module P4: input I; output 0; signal S1, S2 in present I then emit S1 end || present S1 then emit S2 end || present S2 then emit 0 end end module

accepted by constructiveness

module P3: input I; output 01, 02; present I then present 02 then emit 01 end else present 01 then emit 02 end end present end module

rejected by acyclicity test reactive and deterministic accepted by constructiveness

Examples

module P1:	
output 0;	
present O	
else emit ()
end present	
end module	

module P2: output 0; present 0 then emit 0 end present end module rejected by constructiveness

rejected by constructiveness

Examples

module Px: output 0; present 0 then emit 0 else emit 0 end module logically correct by self justification rejected by constructiveness

Advanced Constructiveness

• Preemption statements behave as tests for the guard in each instant where the guard is active. Their constructiveness test is straightforward.

module Py: output 0; abort sustain 0 when 0

non-constructive in the first instant non-constructive (non reactive) in later instants

Advanced Constructiveness

- Preemption statements (abort) behave as tests for the guard in each instant where the guard is active. Their constructiveness test is straightforward.
- Signal expressions:
 - not e: straightforward
 - e1 or e2: evaluates to true as soon as one of e1 or e2 evaluates to true, even if the other one is still unknown.
 - e1 and e2: analogous
- The computation of values of valued signals cannot be lazy since the value is known only when all emitters are either executed or discarded (due to signal combination).
 A statement such as emit S(2) is handled as emit S; ?S:=2; by the constructiveness test.

Advanced Constructiveness

- Signal expressions:
 - not e: straightforward
 - e1 or e2: evaluates to true as soon as one of e1 or e2 evaluates to true, even if the other one is still unknown.
 - e1 and e2: analogous
- The computation of values of valued signals cannot be lazy since the value is known only when all emitters are either executed or discarded (due to signal combination).

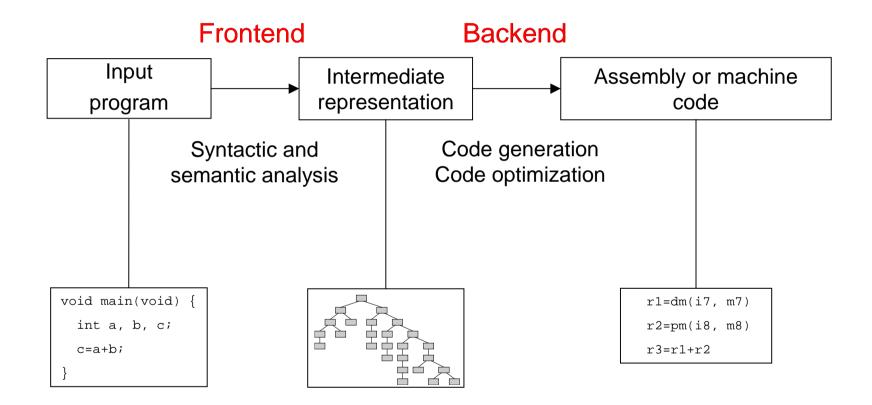
A statement such as emit S(2) is handled as emit S; ?S:=2; by the constructiveness test.

Example

```
signal S1, S2 in
  present I then emit S1 else emit S2
||
  present S1 then
    call P1()();
    emit S2
  end present
||
  present S2 then
    call P2()();
    emit S1
  end present
end signal
```

constructive

Compiler Structure



Detailed Compiler Structure

