
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

The Constructive Semantics

• Logical correctness is not in accordance with the intention of the 
language, ie with its intuitive semantics and with the intended 
sequential character of test statements.

• Example:
module P10:
present O then nothing end; emit O

is logically correct, but the information that O is present flows 
backwards across the sequencing operator ; contradicting the 
basic intuition about sequential execution.

• Aside from the explicit concurrency || all Esterel statements are 
sequential.



Embedded Systems 2002/2003 (c) Daniel Kästner. 2

The Constructive Semantics

• Idea: do not check assumptions about signal statuses, but 
propagate facts about control flow and signal statuses. Self-
justification is replaced by fact-to-fact propagation.

• Accounts for programmer's natural way of thinking: in terms of 
cause and effect.

• Three-valued logic for signals: present, absent, unknown.

• In each instant the statuses of the input signals are given by the 
environment and the statuses of the other signals are initially 
set to unknown.



Embedded Systems 2002/2003 (c) Daniel Kästner. 3

The Constructive Semantics

• Three equivalent presentations:
– Constructive behavioral semantics

• Derived from the logical behavioral semantics
• Constructive restrictions are added to the logical coherence rule

– Constructive operational semantics
• Based on term rewriting rules defining microstep sequences
• Simplest way of defining an efficient interpreter

– Circuit semantics
• Translation of program into constructive circuits
• Core of the Esterel v5 compiler.



Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Constructive Behavioral Semantics

• Logical coherence semantics augmented by reasoning about 
what a program must or cannot do, both predicates being 
disjoint and defined in a constructive way.

• The must predicate determines which signals are present and 
which statements are executed.

• The cannot predicate determines when signals are absent and 
it serves in pruning out false execution paths.

• A program is accepted as constructive if and only if fact 
propagation using the must and cannot predicates suffices in 
establishing presence or absence of all signals.



Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Constructive Behavioral Semantics

• Logical Coherence Law: 
– A signal S is present in an instant iff an emit S statement is 

executed in this instant.

• Constructive Coherence Law:
– A signal S is present iff an emit S statement must be executed.
– A signal S is absent iff an emit S statement cannot be executed.



Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Constructive Behavioral Semantics
• A signal can have three statuses:

– +: known to be present
– –: known to be absent
– ⊥ : yet unknown 

• must and cannot predicates are defined by structural induction on 
statements.

• p ; q
– Must (resp. can) execute q if p must (resp. can) terminate

• present S then p else q end
– S known to be present -> Test behaves as p
– S known to be absent -> Test behaves as q
– S yet unknown -> Test can do whatever p or q can do; there is nothing 

the test must do.



Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Example 1

module P1:
input I;
output O;
signal S1, S2 in
present I then emit S1 end (i1)
||
present S1 else emit S2 end (i2)
||
present S2 then emit O end (i3)

end signal
end module

• If I is present:
– i1 must take its then branch, emit S1

and terminate → S1 present
– i2 must take its (empty) then branch 

and cannot take its else branch →
emit S2 cannot be executed, S2 
cannot be emitted → S2 absent

– i3 cannot take its then branch → O 
cannot be emitted and is absent.

• If I is absent:
– i1 cannot take its then branch → emit 

S1 cannot be executed → S1 absent
– i2 must take its then branch → emit 

S2 must be executed → S2 present.
– i3 must take its then branch → emit O

must be executed → O present.



Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Example 2 – Part 1

module P2:
output O;
signal S in
emit S;
present O then
present S then
pause

end;
emit O

end
end signal

• Analyze what signal S must do with status ⊥ for O.
– Analyze body with status ⊥ for O and S.

– S must be emitted.

– Thus: redo the analysis with status ⊥ for O and + for S.

– Status of O is unknown: there is nothing that the present
statement must do. Progress can only be made by 
analyzing what we cannot do in the branches of the test.

– The then branch contains a present S test. Since S is 
known to be present, we cannot take the implicit else
branch. Since the then branch is a pause statement it 
cannot terminate. Therefore the emit O statement cannot 
be executed and O cannot be emitted.

– As a consequence O must be set absent and the analysis 
must be redone with status – for O.



Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Example 2 – Part 2

module P2:
output O;
signal S in
emit S;
present O then
present S then
pause

end;
emit O

end
end signal

• Analyze what signal S must do with status – for O.

– The implicit else branch of the present O test that 
terminates execution must be taken.

– The program is constructive since we have fully 
determined the signal statuses.



Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Constructive Behavioral Semantics

• signal S in p end
– Can: recursively analyze p with status ⊥ for S
– Must:

• Assume we already know that we must execute the declaration in 
some signal context E

• Must compute final status of S to determine signal context of p
• First analyze p in E augmented by setting the unknown status ⊥ for S
• If S must be emitted:

– propagate this information by reanalyzing p in E with S present
– This may generate more information about the other signals

• If S cannot be emitted:
– reanalyze p in E with S absent



Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Constructive Behavioral Semantics –
Formal Definition

• Let S be a set of signals. 
An event E is a mapping E : S → B⊥ =  {+, –, ⊥ } which assigns a 
status from B⊥ to all signals in S.

• Notation:
– s + : E (s) = +
– s - : E (s) = –
– E ⊆ E ': s + in E ⇒ s + in E '

• Singleton event {s +}: 
{s +}(s ) = + and {s +}(s ')= – forall s ' ≠ s

• Let an event E for a set S be given, a signal s possibly not in S and a 
status b in B⊥ . Then E * s b is an event for the set S ∪ {s } where

E*s b (s ) = b and E*s b (s ') = E (s ') ∀ s ' ≠ s. 



Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Constructive Behavioral Semantics –
Formal Definition

• The statements nothing, pause and exit are represented 
by completion codes k >= 0:
– nothing is encoded by 0
– pause is encoded by 1
– exit T is encoded by 2, if the directly enclosing trap declaration is 

that of T and n +2 if n trap declarations have to be traversed 
before reaching that of T.

• To handle trap propagation we define two operators 





>+
==

=↑







>−
=

==
=↓

              1 if   ,1
2or  0 if       ,

              2 if  ,1
               1 if        ,1

 2or  0 if        ,0

kk
kkk

k

kk
k

kk
k



Embedded Systems 2002/2003 (c) Daniel Kästner. 13

Constructive Behavioral Semantics –
Formal Definition

• Given a program P with body p and an input event I. A reaction of 
the program is given by a behavioral transition of the form

where O is an output event and the resulting program P ' is the new 
state reached by P after the reaction. P ' is called the derivative of P
by the reaction.

• The statement transition relation has the form

where 
– E is an event that defines the status of all signals in the scope of p
– E ' is an event composed of all signals emitted by p in the reaction, k is 

the completion code returned.

The statement p ' is called the derivative of p by the reaction.

'PP O→
I

',' pp kE→ E



Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Constructive Behavioral Semantics –
Formal Definition

k  somefor     '        ' , ppPP kOO →⇔→
I I ∪ O





∈∈
∅=∅=∅

=
               ,for       }},,{max{

          or      if                      
),(

LlKklk
LK

LKMax



Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Constructive Behavioral Semantics –
Formal Definition

• The Must function determines what must be done in a reaction            
.

Must(p, E ) = 〈S, K 〉

where 
– E is an event, 
– S is the set of signals that p must emit
– K is the set of completion codes that p must return.

• We write 
Must(p, E ) = 〈S, K 〉 =: 〈Musts(p,E ), Mustk(p,E )〉.

'PP O→
I



Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Constructive Behavioral Semantics –
Formal Definition

• The function Cannotm(p,E ) is used to prune out false paths.

Cannotm(p,E ) = 〈Cannots
m(p,E ), Cannotk

m(p,E )〉 = 〈S,K 〉
– S is the set of signals that p cannot emit
– K is the set of completion codes that p cannot exit with when the input 

event is E.

• m ∈ {+, ⊥ } indicates whether it is known that the statement p must 
be executed in the event E. The case m = – will never occur since 
Cannot will only be called for potentially executable statements.

• In the following, we will use Canm(p,E ) since it is easier to be defined 
formally; from this, Cannotm(p,E ) can be determined by 
componentwise complementation.



Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Constructive Behavioral Semantics –
Formal Definition

• Must and Canm are defined by structural induction over the kernel 
statements.

),(),   (
),(),   (

        ),,(),(
                              ),,(
                              ),,(

),      (

        ,,
   ),,(
   ),,(

),      (

}0{,}{), (), (
}{,),(),(

EpmCanEswhenpsuspendmCan
EpMustEswhenpsuspendMust

EsifEqCanEpCan
EsifEqmCan
EsifEpmCan

EendqelsepthenspresentmCan

Esif
EsifEqMust
EsifEpMust

EendqelsepthenspresentMust

sESemitmCanESemitMust
kEkmCanEkMust

=
=

∈⊥⊥∪⊥
∈−
∈+

=

∈⊥∅∅
∈−
∈+

=

==
∅==























Embedded Systems 2002/2003 (c) Daniel Kästner. 18

Constructive Behavioral Semantics –
Formal Definition

discarded. is p of 0 code completion the case                   
 which in terminatemust  p ifonly  q analyze We                   









=∪

≠
=

}0{),(   ,),(),,(),(

}0{),(                                                    ),,(
) ,;(

EpkMustifEqkMustEqsMustEpsMust

EpkMustifEpMust
EqpMust



Embedded Systems 2002/2003 (c) Daniel Kästner. 19

Constructive Behavioral Semantics –
Formal Definition

otherwise. argument  with terminate,                   
must  if and    if  argument  with q analyze We                   

=⊥
+=+=

=⊥∈

∈

+=+=∈

∪∪

∉

=






















m'
pmm'

mwithEpm
kCanif

EpkMustand

mifmwithEpm
kCanif

Eqm
kCanm

kCanEqm
sCanEpm

sCan

Epm
kCanif

EpmCan

EqpmCan

otherwise  '    ),( 0 or                             

),(0                             

      '    ),( 0                            

                         ),('  {0}\E)(p,),,('),(

),( 0                            

                                                                                                    ), ,(

) ,;(



Embedded Systems 2002/2003 (c) Daniel Kästner. 20

Constructive Behavioral Semantics –
Formal Definition

),(),,((,),(),(),||(

),(),,((,),(),(),||(

),(),(
),(),(

  

  

Eqm
kCanEpm

kCanMaxEqm
sCanEpm

sCanEqpmCan

EqkMustEpkMustMaxEqsMustEpsMustEqpMust

EpmCanEendploopmCan
EpMustEendploopMust

∪=

∪=

=
=

• The Max operation e.g. ensures that || cannot 
terminate if one of its branches cannot do so.



Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Constructive Behavioral Semantics –
Formal Definition

),(),,(),(

),(),,()},({

})({),  (

),(),,(),(

),(),,()},({

})({),  (

  

  

Eqm
kCanEqm

sCanEqmCan

Eqm
kCanEqm

sCanEqmCan

pmCanEendpinTtrapmCan

EqkMustEqsMustEqMust

EqkMustEqsMustEqMust

pMustEendpinTtrapMust

↑=↑

↓=

↑=

↑=↑

↓=

↑=



Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Constructive Behavioral Semantics –
Formal Definition



























⊥∗

⊥∗+∉−∗

⊥∗∈+=+∗+

=

⊥∗

⊥∗+∉−∗

⊥∗∈+∗

=

                                                     },{\),(

                         ),(         },{\),(

     ),(             },{\),(

),   (

                                    },{\),(

  ),(                 },{\),(

),(                 },{\),(

),   (

otherwisessEpm
sCan

sEpsCansifssEpmCan

sEpsMustsandmifssEpCan

EpinssignalmCan

otherwisessEpMust

sEpsCansifssEpMust

sEpsMustsifssEpMust

EpinssignalMust

• We first analyze the body p with status ⊥ for s with the same m argument. 
• If m=+ and we find that the signal must be emitted we reanalyze p with status + for s. 
• For both m=+ and m= ⊥ if the signal cannot be emitted we reanalyze p with status – and with 

the same m.
• Otherwise we return the result of the analysis of p with status ⊥ for s.
• Note that the signal status can be set to + only if m=+. This is necessary to avoid speculative 

computations.



Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Constructive Behavioral Semantics

• The constructiveness analysis involves many recomputations: 
Once a signal status has been set, the body of its declaration 
(the whole program for an output) has to be reanalyzed, this 
way re-establishing many facts that are already known.

• The goal of the operational and circuit semantics is to avoid 
recomputing known facts.



Embedded Systems 2002/2003 (c) Daniel Kästner. 24

Example
module P4:
input I;
output O; 
signal S1, S2 in
present I then emit S1 end

||
present S1 then emit S2 end

||
present S2 then emit O end

end module

module P3:
input I;
output O1,O2;
present I then
present O2 then emit O1 end

else
present O1 then emit O2 end

end present
end module

rejected by acyclicity test
reactive and deterministic
accepted by constructiveness

accepted by constructiveness



Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Examples

module P1:
output O;
present O
else emit O

end present
end module

module P2:
output O;
present O
then emit O

end present
end module

rejected by constructiveness

rejected by constructiveness



Embedded Systems 2002/2003 (c) Daniel Kästner. 26

Examples

module Px:
output O;
present O then emit O else emit O

end module

logically correct by self
justification
rejected by constructiveness



Embedded Systems 2002/2003 (c) Daniel Kästner. 27

Advanced Constructiveness

• Preemption statements behave as tests for the guard 
in each instant where the guard is active. Their 
constructiveness test is straightforward.

module Py:
output O;
abort
sustain O

when O

non-constructive in the first instant
non-constructive (non reactive) in later instants



Embedded Systems 2002/2003 (c) Daniel Kästner. 28

Advanced Constructiveness

• Preemption statements (abort) behave as tests for the guard in 
each instant where the guard is active. Their constructiveness 
test is straightforward.

• Signal expressions:
– not e: straightforward
– e1 or e2: evaluates to true as soon as one of e1 or e2 evaluates to 

true, even if the other one is still unknown.
– e1 and e2: analogous

• The computation of values of valued signals cannot be lazy
since the value is known only when all emitters are either 
executed or discarded (due to signal combination). 
A statement such as emit S(2) is handled as 
emit S; ?S:=2; by the constructiveness test.



Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Advanced Constructiveness

• Signal expressions:
– not e: straightforward
– e1 or e2: evaluates to true as soon as one of e1 or e2 

evaluates to true, even if the other one is still unknown.
– e1 and e2: analogous

• The computation of values of valued signals cannot 
be lazy since the value is known only when all 
emitters are either executed or discarded (due to 
signal combination). 
A statement such as emit S(2) is handled as 
emit S; ?S:=2; by the constructiveness test.



Embedded Systems 2002/2003 (c) Daniel Kästner. 30

Example

signal S1, S2 in
present I then emit S1 else emit S2

||
present S1 then
call P1()();
emit S2

end present
||
present S2 then
call P2()();
emit S1

end present
end signal

constructive



Embedded Systems 2002/2003 (c) Daniel Kästner. 31

Compiler Structure

Input  
program

Intermediate 
representation

Assembly or machine 
code

void main(void) {

int a, b, c;

c=a+b;

}

r1=dm(i7, m7)

r2=pm(i8, m8)

r3=r1+r2

Frontend BackendFrontend

Syntactic and 
semantic analysis

Backend

Code generation  
Code optimization



Embedded Systems 2002/2003 (c) Daniel Kästner. 32

Detailed Compiler Structure

Source (Text)

Syntax Analysis

Tokenized Program

Syntax Tree

Decorated Syntax Tree

Intermediate Representation

Lexical Analysis

Semantic Analysis

High-Level Optimizations

Code Generation

Machine Program


