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Expressions

• Data expressions:
– references to constants or variables
– ?S yields the current value of signal S
– pre(?S) yields the value of signal S at the previous instant

• Signal expressions:
– S: current status of signal S
– pre(S): status of signal S at previous instant
– Boolean expressions over signal statuses (using the logical and, or, 

not operators, the pre operator and the predefined tick signal). 
present is considered true, absent false.

– First instant of a signal S:
• interface signal: first instant of program execution
• local signal: any instant where the corresponding local signal 

declaration is entered.
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Expressions

• Delay expressions:
– Used in temporal statements like await or abort.
– Standard delays:

• Defined by a signal expression.
• Never elapse instantaneously.
• Example: meter and not second

– Immediate delays
• Defined as immediate s, where s is a signal expression
• Can elapse instantaneously.
• Example: immediate [meter and not second]
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Expressions

– Count delays
• Defined by an integer count expression e followed by a signal 

expression s.
• The expression is evaluated only once when the delay is 

initiated. If the value is 0 or less, it is set to 1. Thus a count 
delay never elapses instantaneously.

• There is no immediate count delay, and counts cannot be 
combined with Boolean signal operators.

• Example: 3 [second and not meter]
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Example (1)

module System1:
input A, B, R;
output O;
loop
[await A || await B]
emit O

each R
end module
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Example (2)

• every S do p end awaits the first 
future occurence (ie not at 
initialization time) of S to start p.

• every immediate S do p end
immediately starts p if I is 
present at the first instant.

module Count1:
input I;
output COUNT:=0:integer;
every I do

emit COUNT(pre(?COUNT)+1);
end every
end module

module Count2:
input I;
output COUNT;
var Count:=0:integer in

every I do
Count:=Count+1;
emit(COUNT(Count)

end every
end var
end module
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Abortion
• Behavior of abort p when S:

– In the starting instant, p is immediately 
started, the initial presence or absence of 
S being ignored (delayed abort).

– If p terminates before S occurs, then the 
whole abort statement terminates.

– If S occurs while p is not yet terminated, 
the abort statement immediately 
terminates and p does not receive 
control in the current instant (strong 
abort).

• To make abort sensitive to S in the first 
instant:

abort p when immediate S
• To give p control a last time when S 

occurs:
weak abort p when S

module Speedometer:

input Second, Meter;

output Speed: integer in

loop

var Distance:=0: integer in 

abort

every Meter do

Distance:=Distance+1

end every

when Second do

emit Speed(Distance)

end abort  

end var

end loop

end module
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Generic Behaviors and Modules
• Each data object used by a 

module must be declared in that 
module.

• A data object defined in different 
submodules must be identically 
declared.

• Calling modules: run statement. 
Explicit renaming by '/'.

• Renaming arguments are passed 
by name and not by position!

• If a name is kept unchanged in a 
substitution, it need not be passed 
as a parameter.

module TWO_STATES:
input On, Off;
output IsOn, IsOff;
loop
abort
sustain IsOff

when On
abort
sustain IsOn

when Off
end loop
end module

...
signal IsOff in

run TWO_STATES [signal RadioOn / On,
RadioOff / Off, 
Playing / IsOn]

end
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Correctness Issues

• Easy to write syntactically correct but semantically 
nonsensical programs.

• Esterel programs are required to be reactive and 
deterministic.

• Reactive:
– A well-defined output for each input

• Deterministic:
– Only one output for each input.

• Logically correct: reactive and deterministic
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Logical Correctness

• Logical coherence law: A signal S is present in an instant if and 
only if an emit S statement is executed in this instant.

• Logical correctness requires: there exists exactly one status for 
each signal that respects the coherence law.

• Let a program P and an input I be given:
– P is logically reactive wrt I: at least one logically coherent global 

status.
– P is logically deterministic wrt I: at most one logically coherent 

global status.
– P is logically correct wrt I: logically reactive and deterministic.
– P is logically correct: logically correct wrt all possible input events.
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Logical Correctness

• Pure Esterel programs can be analyzed for logical correctness by
exhaustive case analysis.

• Given the status of each input signal, one can make all possible
assumptions about the global status and checke them 
individually.

• Logical correctness is decidable ☺ – but NP complete "

• Logical correctness can be counter-intuitive – other basis for 
language semantics needed.
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Logical Correctness
module P1:
input I;
output O;
signal S1, S2 in
present I then emit S1 end
||
present S1 else emit S2 end
||
present S2 then emit O end

end signal
end module

logically correct

• I present: Assumption S1 present, S2 not present, O not present
– Justification: The emit S1 statement is executed justifying the assumption S1 present, no emit 

S2 and emit O statements are executed, justifying the assumption S2 absent and O absent.
• I absent: Assumption S1 absent, S2 present, O present.

– Justification: The emit S1 statement is not executed justifying the assumption S1 absent, the 
emit S2 statement is executed justifying the assumption S2 present and the emit O statement is 
executed justifying the assumption O present.

• All other assumptions can be shown to be logically incoherent.
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Logical Correctness

module P2:
output O;
present O
else emit O

end present
end module

non-reactive

module P3:
output O;
present O
then emit O

end present
end module

reactive, 
but non-deterministic
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Logical Correctness

module P4:
present O1 then emit O1 end
||
present O1 then
present O2 else emit O2 end

end

logically correct



Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Acyclicity and Constructiveness

• Esterel programs can be required to be acyclic:
– No dependency cycles
– Can be defined precisely and checked at compile time.
– BUT: good programs will be rejected.

• Weaker property called constructiveness:
– Cyclic programs can be constructive
– Can be checked at compile time
– More programs will be accepted, but constructiveness is 

harder to check than acyclicity. 
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Examples
module P5:
output O;
present O
else emit O

end present
end module

non-reactive

module P6:
output O;
present O
then emit O

end present
end module

reactive, but non-deterministic

Both are rejected by cyclicity test.
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Examples
module P7:
input I;
output O1,O2;
present I then
present O2 then emit O1 end

else
present O1 then emit O2 end

end present
end module

rejected by acyclicity test
reactive and deterministic

module P8:
output O1,O2;
present O1 then emit O1 end
||
present [O1 and not O2] then emit O2 end
end module

Logically correct by self 
justification: 
unique behavior 
O1 and O2 absent

Problem: self justification does not fit with the standard 
intuition of imperative languages



Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Which Semantics to Adopt?

• Esterel has been designed as an imperative 
language.

• Thus, e.g., in present S then p end
the status of S should not depend on what p might 
do.

• In other words: things may happen in the same 
instant, but have to happen in order. 
The ordering implicit in then is not that of time but 
that of sequential causality.
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The Constructive Semantics

• Idea: do not check assumptions about signal 
statuses, but propagate facts about control flow and 
signal statuses. Self-justification is replaced by fact-
to-fact propagation.

• Three-valued logic for signals: present, absent, 
unknown.

• In each instant the statuses of the input signals are 
given by the environment and the statuses of the 
other signals are initially set to unknown.
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The Constructive Semantics

• Three equivalent presentations:
– Constructive behavioral semantics

• Derived from the logical behavioral semantics
• Constructive restrictions are added to the logical coherence rule

– Constructive operational semantics
• Based on term rewriting rules defining microstep sequences
• Simplest way of defining an efficient interpreter

– Circuit semantics
• Translation of program into constructive circuits
• Core of the Esterel v5 compiler.
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Constructive Behavioral Semantics

• Logical coherence semantics augmented by reasoning about 
what a program must or cannot do, both predicates being 
disjoint and defined in a constructive way.

• The must predicate determines which signals are present and 
which statements are executed.

• The cannot predicate determines when signals are absent and 
it serves in pruning out false execution paths.

• A program is accepted as constructive if and only if fact 
propagation using the must and cannot predicates suffices in 
establishing presence or absence of all signals.
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Constructive Behavioral Semantics

• Logical Coherence Law: 
– A signal S is present in an instant iff an emit S statement is 

executed in this instant.

• Constructive Coherence Law:
– A signal S is present iff an emit S statement must be executed.
– A signal S is absent iff an emit S statement cannot be executed.
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Constructive Behavioral Semantics
• A signal can have three statuses:

– +: known to be present
– –: known to be absent
– ⊥ : yet unknown 

• must and cannot predicates are defined by structural induction on 
statements.

• p ; q
– Must (resp. can) execute q if p must (resp. can) terminate

• present S then p else q end
– S known to be present -> Test behaves as p
– S known to be absent -> Test behaves as q
– S yet unknown -> Test can do whatever p or q can do; there is nothing 

the test must do.
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Example

module P1:
input I;
output O;
signal S1, S2 in
present I then emit S1 end (i1)
||
present S1 else emit S2 end (i2)
||
present S2 then emit O end (i3)

end signal
end module

• If I is present:
– i1 must take its then branch, emit S1

and terminate → S1 present
– i2 must take its (empty) then branch 

and cannot take its else branch →
emit S2 cannot be executed, S2 
cannot be emitted → S2 absent

– i3 cannot take its then branch → O 
cannot be emitted and is absent.

• If I is absent:
– i1 cannot take its then branch → emit 

S1 cannot be executed → S1 absent
– i2 must take its then branch → emit 

S2 must be executed → S2 present.
– i3 must take its then branch → emit O

must be executed → O present.
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Constructive Behavioral Semantics

• signal S in p end
– Can: recursively analyze p with status ⊥ for S
– Must:

• Assume we already know that we must execute the declaration in 
some signal context E

• Must compute final status of S to determine signal context of p
• First analyze p in E augmented by setting the unknown status ⊥ for S
• If S must be emitted:

– propagate this information by reanalyzing p in E with S present
– This may generate more information about the other signals

• If S cannot be emitted:
– reanalyze p in E with S absent
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Constructive Behavioral Semantics –
Formal Definition

• Let S be a set of signals. 
An event E is a mapping E : S → B⊥ =  {+, –, ⊥ } which assigns a 
status from B⊥ to all signals in S.

• Notation:
– s + : E (s) = +
– s - : E (s) = –
– E ⊆ E ': s + in E ⇒ s + in E '

• Singleton event {s +}: 
{s +}(s ) = + and {s +}(s ')= – forall s ' ≠ s

• Let an event E for a set S be given, a signal s possibly not in S and a 
status b in B⊥ . Then E * s b is an event for the set S ∪ {s } where

E*s b (s ) = b and E*s b (s ') = E (s ') ∀ s ' ≠ s. 
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Constructive Behavioral Semantics –
Formal Definition

• The statements nothing, pause and exit are represented 
by completion codes k ≥ 0:
– nothing is encoded by 0
– pause is encoded by 1
– exit T is encoded by 2, if the directly enclosing trap declaration is 

that of T and n +2 if n trap declarations have to be traversed 
before reaching that of T.

• Each control thread returns a completion code k≥0 when 
it has completed its execution in that instant. The 
completion code is generated by executing a k statement, 
ie a nothing, pause or exit T kernel statement.
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Constructive Behavioral Semantics –
Formal Definition

• To handle trap propagation we define two operators 
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Constructive Behavioral Semantics –
Formal Definition

• Given a program P with body p and an input event I. A reaction of 
the program is given by a behavioral transition of the form

where O is an output event and the resulting program P ' is the new 
state reached by P after the reaction. P ' is called the derivative of P
by the reaction.

• The statement transition relation has the form

where 
– E is an event that defines the status of all signals in the scope of p
– E ' is an event composed of all signals emitted by p in the reaction, k is 

the completion code returned.

The statement p ' is called the derivative of p by the reaction.

'PP O→
I

',' pp kE→ E



Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Constructive Behavioral Semantics –
Formal Definition
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Constructive Behavioral Semantics –
Formal Definition

• The Must function determines what must be done in a reaction            
.

Must(p, E ) = 〈S, K 〉

where 
– E is an event, 
– S is the set of signals that p must emit
– K is the set of completion codes that p must return.

• We write 
Must(p, E ) = 〈S, K 〉 =: 〈Musts(p,E ), Mustk(p,E )〉.

'PP O→
I
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Constructive Behavioral Semantics –
Formal Definition

• The function Cannotm(p,E ) is used to prune out false paths.

Cannotm(p,E ) = 〈Cannots
m(p,E ), Cannotk

m(p,E )〉 = 〈S,K 〉
– S is the set of signals that p cannot emit
– K is the set of completion codes that p cannot exit with when the input 

event is E.

• m ∈ {+, ⊥ } indicates whether it is known that the statement p must 
be executed in the event E. The case m = – will never occur since 
Cannot will only be called for potentially executable statements.

• In the following, we will use Canm(p,E ) since it is easier to be defined 
formally; from this, Cannotm(p,E ) can be determined by 
componentwise complementation.


