
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

The Statemate Semantics of 
Statecharts

• There is no Statecharts standard, thus no official 
semantics.

• Behavior of the SUD is a set of possible runs, each 
representing the response of the system to a sequence of 
external stimuli generated by the environment. A run is 
composed of a sequence of steps, the snapshots of the 
system state between runs being called status.

• Various semantics proposals; main source of discourse: 
Should changes that occur in a given step take effect in 
the current step, or the next one?



Embedded Systems 2002/2003 (c) Daniel Kästner. 2

When do changes take effect?

Note: The execution of a step takes zero time.



Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Principles of the Semantics

1. Reactions to external and internal events, and changes that 
occur in a step, can be sensed only after completion of the 
step.

2. Events live for the duration of one step only (ie the one 
following that in which they occur) and are not remembered in 
subsequent steps.

3. Calculations in one step are based on the situation at the 
beginning of the step.

4. Greediness property: A maximal subset of nonconflicting 
transitions and SRs is always executed.

5. The execution of a step takes zero time.
6. The time interval between the executions of two consecutive 

steps is not part of the step semantics.



Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Basic Definitions

• Configuration: maximal set of states the system can be in 
simultaneously.

• Let R be a root state. A configuration C obeys the following rules:
1. C contains R
2. If C contains a state A of type OR, it must also contain exactly one of A's 

substates
3. if C contains a state A of type AND, it must also contain all of A's substates
4. The only states in C are those required by 1-3.

• Basic configuration: maximal 
set of basic states in a legal 
configuration.

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Compound Transitions

• Transition segment: labelled arrows
• Basic compound transition (CT): maximal chain of transition 

segments, linked by connectors that are executable 
simultaneously as a single transition.

• Trigger of a CT: conjunction of the triggers of its constituting
segments, action is concatenation of the actions thereof.

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Compound Transitions

• Two types of connectors:
1. AND connectors: transition segments connected to an AND 

connector will all participate in the same CT. 
Types of AND connectors: joint, fork.

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Compound Transitions

• Two types of connectors:
2. OR connectors. Let T1 and T2 be the sets of transition segments 

leading to and emanating from an OR connector C. Any CT that 
contains a segment from T1∪ T2 must contain exactly one 
segment from T1 and one from T2. 
Types of OR connectors: condition, selection, junction.

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Compound Transitions

• Initial CT: source is a state.
• Continuation CT: source is a default or history connector.
• Full CT: combination of one initial CT and continuation CTs 

which, when executed, lead the system to a full basic 
configuration.

• Remark: a CT can have several sources and several targets.
• The target set must be maximal: if it contains a descendant of a 

component of an AND state, it contains descendants of all of its
other components too.

• CT is enabled: at the beginning of the step the system is in all 
the states of its source sets, and its trigger is true.



Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Compound Transitions

• Complex Example:

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Compound Transitions: Scope

• The scope of a CT tr is the lowest OR-state in the hierarchy of 
states that is a proper common ancestor of all the sources and 
targets of tr including non-basic states that are explicit sources 
or targets of transition arrows appearing in tr. History 
connectors that are targets of such arrows are represented by 
the states in which they are acutally drawn.

• Thus: the scope is the lowest state in which the system stays 
without exiting and reentering when taking the transition.

• Remark: the notion of scope does not depend on the way the 
arrow itself is drawn, but on its sources and targets only.



Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Compound Transitions: Scope

a
b

c



Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Evaluating History

Suppose a Compound Transition t1 is executed whose target is a 
history connector h of state S.

If S has history 
if h is an H connector

let S' be the substate of S which the system was in
when most recently in S; t1 is treated as if its
target is S'.

else /* h is a H* connector */
let S' be the basic configuration relative to S
which the system was in when it was most recently
in S. t1 is treated as if its targets are all the
states in S'.

else /* system was never in S, or S's history was erased by
clh since it was last in S */

t1 is treated as if its target is S; however, if there are 
transitions emanating from h, then these have priority 
higher than those emanating from the default connector of 
S.



Embedded Systems 2002/2003 (c) Daniel Kästner. 13

Evaluating History – Example 1

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Evaluating History – Example 2

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Conflicting Transitions

• Two CTs are in conflict if there is some common state that 
would be exited if any one of them were to be taken.

• Let tx and ty be two conflicting transitions and let Sx and Sy be 
their scopes, respectively. If one of the scopes is an ancestor of 
the other in the state hierarchy, priority is given to the transition 
whose scope is higher in the hierarchy. If Sx=Sy, non-
determinism occurs.

• An SR defined in state S is in conflict with all the CTs that exit S 
or one of S's ancestors.

• CTs have higher priority than SRs, since if a state S is exited as 
a result of some CT, its SRs are not executed.



Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Examples for Conflicting 
Transitions - 1

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Examples for Conflicting 
Transitions - 2

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 18

The Step Algorithm (1)

• Inputs:
– state of the system:

• list of states the system is currently in
• list of activities currently active
• current values of conditions and data-items
• list of events generated internally in the previous step
• list of scheduled actions and their time for execution
• list of timeout events and their time for occurrence
• information on the history of states

– current time
– list of external changes presented by the environment since last

step.

• Output: New system state.



Embedded Systems 2002/2003 (c) Daniel Kästner. 19

The Step Algorithm (2)
Step preparation:

Add the external events to the list of internally generated events.

Execute all the actions implied by the external changes (e.g. changing 
the values of data items, conditions, activities, but not states).

For each pair (a,t) in the list of scheduled actions do

if (t <= current_time)

then carry out a and remove (a,t) from the list

For each pair (E,t) in the timeout event list, with E=tm(e,d) do

if e is generated 

then t:=current_time + d;

else if t <= current_time

then generate E and set t=infty.



Embedded Systems 2002/2003 (c) Daniel Kästner. 20

The Step Algorithm (3)
Compute the Contents of the Step (CTs and SRs to be executed are marked):

1. Compute the set of enabled CTs.

2. Remove from this set all the CTs that are in conflict with an enabled 
CT of higher priority.

3. Split the set of enabled CTs into maximal nonconflicting sets.

4. For each set of CTs, compute the set of enabled SRs defined in states 
that are currently active and are not being exited by any of the CTs in 
the set.

5. If there are no enabled CTs or SRs

then step is empty

else if stage 3. resulted in a single set

then this constitutes the step

else we have non-determinism and any one of the sets 
can be chosen as step.



Embedded Systems 2002/2003 (c) Daniel Kästner. 21

The Step Algorithm (4)
Execute the CTs and SRs:

Let EN be the set of enabled CTs and SRs.

• For each SR X in EN, execute the action associated with X.

• For each CT X in EN, let Sx and Sn ben the sets of states exited and 
entered by X, respectively:
– Update the history of all the parents of states in Sx

– Delete the states in Sx from the list of states in which the system resides

– Execute the actions associated with exiting the states in Sx

– Execute the actions of X

– Execute the actions associated with entering the states in Sn

– Add to the list of states in which the system resides all the states in Sn.



Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Models of Time

• When is the internal clock advanced relative to the execution of 
steps?

• How long do steps take in terms of the clock?
• Models of time supported by STATEMATE:

– synchroneous: system executes a single step every time unit, 
reacting to all the external changes that occur in the one time unit 
elapsed since the completion of the previous step.

– asnchroneous: system reacts whenever an external change occurs, 
allowing for several external changes to occur simultaneously and 
allowing several steps to take place within a single point in time 
(super-step). However, while the steps in a super-step are 
assumed to take zero time they are considered to be executed in 
order.

• In both models: execution of step viewed as taking zero time.



Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Racing Conditions

• Racing condition: value of an element is modified more than 
once, or is both modified and used at a single point in time.

• Due to super-steps, racing problems can arise also between 
transitions or actions that are executed in different steps.

• In each step and super-step, several transitions may be 
enabled. A race situation is one in which, were the enabled 
transitions executed in a different order (yet a legal one 
according to the enabling order) different results are obtained in 
one or more of the data items or conditions.



Embedded Systems 2002/2003 (c) Daniel Kästner. 24

Racing Condition - Example

Source [1]



Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Multiple statecharts

• Multiple active statecharts are treated like orthogonal 
components, except that when one of its statecharts 
becomes non-active the other chart continues to be 
active.

• In the asynchroneous time model the steps in 
multiple statecharts are carried out in 
synchronization.

• In the synchroneous time model within a chart all the 
orthogonal components remain synchronized but 
each chart is synchronized with its own clock and not 
necessarily with the other charts.


