Timed Languages

- A time sequence \(\tau = \tau_1 \tau_2 \ldots \) is an infinite sequence of time values \(\tau_i \in \mathbb{R} \) with \(\tau_i > 0 \), satisfying the following constraints:
 - Monotonicity: \(\tau \) increases strictly monotonically so that \(\tau_i < \tau_{i+1} \) for all \(i \geq 1 \).
 - Progress: For every \(t \in \mathbb{R} \), there is some \(i \geq 1 \) such that \(\tau_i > t \).

- A timed word over an alphabet \(\Sigma \) is a pair \((\sigma, \tau)\) where \(\sigma = \sigma_1 \sigma_2 \ldots \) is an infinite word over \(\Sigma \) and \(\tau \) is a time sequence. A timed language over \(\Sigma \) is a set of timed words over \(\Sigma \).

- Viewed as an input to an automaton a timed word \((\sigma, \tau)\) presents the symbol \(\sigma \) at time \(\tau \).
Examples of Timed Languages

\[L_1 = \{ ((a \mid b)^\omega, \tau) \mid \forall i.((\tau_i > 5.6) \rightarrow (\sigma_i = a)) \} \]

- Language consists of all timed words \((\sigma, \tau)\) such that there is no \(b\) after time 5.6.

\[L_2 = \{ ((ab)^\omega, \tau) \mid \forall i.((\tau_{2i} - \tau_{2i-1}) < (\tau_{2i+2} - \tau_{2i+1})) \} \]

- Language consists of all timed words \((\sigma, \tau)\) in which \(a\) and \(b\) alternate and for successive pairs of \(a\) and \(b\) the time difference between \(a\) and \(b\) keeps increasing.
Timed Transition Tables

The choice of the next state depends on the input symbol read and on the time of the input symbol relative the times of the previously read symbols.

Thus, real-valued clocks are associated with the transition table:
- Clocks can be independently reset to 0 with any transition.
- Clocks keep track of time elapsed since last reset.
- Transitions can put constraints on clock values: a transition may be taken only if the current values of the clocks satisfy the associated constraints.
- All clocks increase at a uniform rate, counting time with respect to a fixed global time frame; they do not correspond to locals clocks of different components in a distributed system.

\[
L \approx \{((ab)^o, \tau) \mid \forall i. (\tau_{2i} < \tau_{2i-1} + 2)\}
\]
Timed Transition Tables

• For a set X of clock variables, the set $\Phi(X)$ of clock constraints δ is defined inductively by

 $\delta := x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$

 where x is a clock in X and c is a constant in Q, the set of nonnegative rationals.

• A clock interpretation ν for a set X of clocks assigns a real value to each clock, i.e., a mapping from X to \mathbb{R}.

• A timed transition table A is a tuple (Σ, Q, Q_0, C, E) where Σ is a finite alphabet, Q is a finite set of states, $Q_0 \subseteq Q$ is a set of start states, C is a finite set of clocks, and $E \subseteq Q \times \Sigma \times Q \times 2^C \times \Phi(C)$ gives the set of transitions. An edge $(s, a, s', \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq C$ gives the clocks to be reset with this transition and δ is a clock constraint over C.
Timed Runs

• A run \(r \), denoted by \((s, \nu)\), of a timed transition table
\((\Sigma, Q, Q_0, C, E)\) over a timed word \((\sigma, \tau)\) is an infinite sequence of
the form
\[
\rho : (s_0, \nu_0) \xrightarrow{\sigma_1}{\tau_1} (s_1, \nu_1) \xrightarrow{\sigma_2}{\tau_2} (s_2, \nu_2) \xrightarrow{\sigma_3}{\tau_3} \ldots
\]
with \(s_i \in S \) and \(\nu_i \in [C \rightarrow R] \), for all \(i \geq 0 \), satisfying the following
requirements:
 - Initiation: \(s_0 \in Q_0 \), and \(\nu_0 = 0 \) for all \(x \in C \).
 - Consecution: for all \(i \geq 0 \), there is an edge in \(E \) of the form
 \((s_{i-1}, \sigma, s_i, \lambda, \delta)\) such that \((\nu_{i-1} + \tau_i - \tau_{i-1})\) satisfies \(\delta_i \) and \(\nu_i \) equals
 \([\lambda_i \rightarrow 0] (\nu_{i-1} + \tau_i - \tau_{i-1})\)

The set \(\text{inf}(r) \) consists of those states \(s \in Q \) such that \(s = s_i \) for
infinity many \(i \geq 0 \).
Timed Run: Example

- Consider a timed word \((a,2) \rightarrow (b,2.7) \rightarrow (c,2.8) \rightarrow (d,5)\) given as input to the following timed transition table:

\[
\begin{align*}
 s_0 & \xrightarrow{a,x:=0} s_1 \\
 s_1 & \xrightarrow{b,y:=0} s_2 \\
 s_2 & \xrightarrow{c,x<1?} s_3 \\
 s_0 & \xrightarrow{d,y>2?} s_3
\end{align*}
\]

\[
r : (s_0,[0,0]) \xrightarrow{a,2} (s_1,[0,2]) \xrightarrow{b,2.7} (s_2,[0.7,0]) \xrightarrow{c,2.8} (s_3,[0.8,0.1]) \xrightarrow{d,5} (s_0,[3,2.3]) \ldots
\]
Timed Regular Languages

- A timed Büchi automaton TBA is a tuple $(\Sigma, Q, Q_0, C, E, F)$ where (Σ, Q, Q_0, C, E) is a timed transition table and $F \subseteq S$ is a set of accepting states. A run $r=(s, \nu)$ of TBA over a timed word (σ, τ) is called an accepting run iff $\inf(r) \cap F \neq \emptyset$.

- For a TBA A the language $L(A)$ of timed words it accepts is defined as the set $L(A) = \{(\sigma, \tau) \mid A \text{ has an accepting run over } \sigma, \tau\}$.

- A timed language L is a timed regular language iff $L = L(A)$ for some TBA A.

- The class of timed regular languages is closed under (finite) union and intersection.
Timed Muller Automata

- A timed Muller automaton TMA is a tuple $(\Sigma, Q, Q_0, C, E, F)$ where (Σ, Q, Q_0, C, E) is a timed transition table and $F \subseteq 2^Q$ specifies an acceptance family. A run $r=(s, \nu)$ of TMA over a timed word (σ, τ) is called an accepting run iff $\inf(r) \in F$.

- For a TMA A the language $L(A)$ of timed words it accepts is defined as the set $L(A) = \{ (\sigma, \tau) \mid A \text{ has an accepting run over } \sigma, \tau \}$.

- A timed language is accepted by some timed Büchi automaton iff it is accepted by some timed Muller automaton.
State Transition Diagrams

- **State transition**: When event γ occurs in state A, if Condition P is true at the time, the system executes action a and transfers to state C.

- State diagrams are directed graphs with nodes denoting states, and arrows (labelled with the triggering event, guarding conditions and action to be executed) denoting transitions.

- **Example**:

- **Problem**: all combinations of states have to be represented explicitly, leading to exponential blow-up.
State Transition Diagrams

- **Disadvantages:**
 - No structure (no strategy for bottom-up of top-down development)
 - State-transition diagrams are flat, i.e., without hierarchy
 - Uneconomical wrt transitions (e.g., interrupt): exponential blow-up
 - Uneconomical wrt states: exponential blow-up
 - Uneconomical wrt parallel composition: exponential blow-up
 - Inherently sequential; parallelism cannot be expressed in a natural way
Statecharts

• Visual formalism for describing states and transitions of a system in a modular fashion
• Extension of state-transition diagrams:
 – hierarchy
 – concurrency / orthogonality: AND/OR decomposition of states together with inter-level transitions
 – communication, including broadcast for communication between concurrent components
• Can be used as stand-alone behavioral description or as part of a more general design methodology
• statecharts = state diagrams + depth + orthogonality + broadcast communication
State Levels: Clustering and Refinement

- Rounded rectangles (called boxes): states
- Encapsulation of boxes: hierarchy relation / clustering
- Arrow: transition
- Arrow labels: \(<event> (<condition>) / <action>\)
 - All components are optional
 - Syntax for events and conditions is closed under boolean operations \(or, and\) and \(not\)
- Three types of states: basic states, OR-states, AND-states.
State Levels: Clustering and Refinement

- Semantics of OR-State (D in example): XOR of A and C. To be in state D the system must be either in A or in C, and not in both. D is abstraction of A and C.
- β is a common property of A and C: β leads from them to B.
- Default state: denotes state that is entered when abstraction of set of states is entered.
History

- **Enter-by-history**: enter the state most recently visited.
 - \(H \): history is applied only on the level in which it appears.
 - \(H^* \): history is applied down to the lowest level of states.

Source [1]
Orthogonality

- **AND decomposition**: being in a state the system must be in all of its AND components.
- **Example**: state Y consisting of AND components A and D. Y is orthogonal product of A and D.

 If Y is entered, the system enters the combination (B,F) by the default arrows. If event α occurs, it transfers B to C and F to G simultaneously, resulting in the new combined state (C,G).

 \rightarrow **Synchronization**.

- If μ occurs, it affects only the D components: independence.

- Due to 'in G' conditions the AND decomposition is not necessarily a disjoint product of states since some dependence between components can be introduced.
Conditions and Selection

Entrances

- Circled connectives for abbreviating more complex entrances to substates:
 - C: conditional.
 - S: selection. Event is selection of one of a number of clearly defined options chosen to modelled as states.
Delays and Timeouts

- Event expression `timeout(event, number)`: represents event that occurs precisely when the specified number of time units have elapsed from the occurrence of the specified event `event`.

- Graphical notation for special case `timeout(entered state, bound)`
Unclustering

• Laying out parts of the startchart not within but outside of their natural neighborhood. Useful for manuals and computerized use.

• Example:
Actions and Activities

• Pure statecharts represents the control part of a system responsible for making time-dependent decisions that influence the system's entire behavior.

• Ability of statecharts to generate events and to change the value of conditions provided by attaching /S to the label of a transition where S is an action carried out by the system.

• Actions: instantaneous occurrences that take ideally zero time. Output in automata-theretic terms.

• Activities: are durable, ie take nonzero amount of time.

• Associated with each activity X:
 - two special kinds of actions to start and stop activities: start(X), stop(X)
 - special condition: active(X)
Actions and Activities

- **Actions** can be associated with
 - the entrance in and the exit from a state
 - transitions
- Activity X is carried **throughout** a state A: action start(X) is carried out upon entering A and stop(X) upon leaving A.
- Example:
Static Reactions

- Each state can be associated with static reactions (SRs) to be carried out (whenever) enabled as long as the system is in (and not exiting) the state in question.
- Syntax: `e[c]/a`
- Semantically: each SR in state S can be regarded as transition in a virtual substate of S that is orthogonal to its ordinary substates and to the other SRs of S.
- Example:
Special Events, Conditions and Actions

<table>
<thead>
<tr>
<th>EVENTS</th>
<th>CONDITIONS</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>in statechart</td>
<td>entered(S)/en(S) exited(S)/ex(S) in(S)</td>
<td>clear-history(state) clear-history(state*)</td>
</tr>
<tr>
<td>connecting statecharts to activities</td>
<td>started(A) stopped(A) active(A) hangig(A)</td>
<td>start(A) / st!(A) stop(A) suspend(A) resume(A)</td>
</tr>
<tr>
<td>information items</td>
<td>read(D) written(D) true(C) false(C) D=exp D<exp D>exp ...</td>
<td>D:=exp made_true(C) make_false(C)</td>
</tr>
<tr>
<td>time</td>
<td>timeout(E,n)</td>
<td>schedule(Ac,n)/sc!(Ac,d)</td>
</tr>
</tbody>
</table>
The STATEMATE System

• Graphical working environment for the specification, analysis, design and documentation of large and complex reactive systems.

• Three points of views, each covered by own visual formalism:
 - structure: module charts
 - functionality: activity charts
 - behavior: statecharts

• Statecharts used to depict reactive behavior over time.

• Each visual formalism admits a formal semantics that provides each feature, graphical and non-graphical alike with a precise and unambiguous meaning.

• Goal: enabling user to specify a system, and to run, debug and analyze the specifications and designs that result from the graphical languages.
The three Views of a SUD

FUNCTIONALITY
Functional Decomposition & Information Flow between Activities

BEHAVIOR
Control & Temporal Relations

STRUCTURE
Physical Decomposition & Information Flow between Modules

System Under Development
Structural View

• Provides hierarchical decomposition of SUD into its physical components, called modules (e.g. piece of hardware, or subroutines or blocks of software).

• Identifies information that flows between modules (data and control signals).

• Visual specification language: module-charts
 - Modules: rectilinear shapes
 • Storage modules: dashed sides
 • Environment modules: dashed-line rectangles external to that of the SUD itself
 - Sub-module relationship: encapsulation
 - Information flow: arrows / hyperarrows
Module-Charts Example (EWS)
Functional View

- Identifies a hierarchy of activities with the details of the data items and control signals that flow between them: functional decomposition of the SUD.

- Non-committing semantics, ie. it only asserts that something can happen. No specification of dynamics, eg when activities will be activated, whether/when they terminate, etc.

- Visual specification language: activity-charts:
 - Activities: rectilinear shapes
 - Flow of data items: solid lines
 - Flow of control items: dashed lines
 - Data-stores: represent databases, buffers, etc.
 - Control activities: behavioral view of the system; appear as empty boxes in the activity-chart (with rounded edges). Their contents are specified by statecharts.
Activity-Charts Example (EWS)
Module and Activity Charts
Behavioral View

• Specifies control, i.e. when, how and why things happen as the SUD reacts over time.
• Visual specification language: statecharts
Statecharts Example (EWS)
Advanced Features (1)

• Consistency and completeness tests, static logic tests. Examples:
 – module hierarchy consistent with activity hierarchy?
 – cyclic definitions?

• Object List Generator (OLG): querying the model of the SUD as described by the modelling languages.

• Single step execution:
 – Step: one unit of dynamic behavior
 – At the beginning and end of a step, the SUD is in a legal status.
 – Status: currently active states and activities, current values of variables and conditions, etc.
 – During a step, the environment activities can generate external events, change the truth values of conditions, and update variables and other data items.
Advanced Features (2)

• **Batch simulation:** carry out many steps in order, controlled by a simulation control program (SCP) written in SCL (Simulation Control Language).

• **Breakpoints, simulation reports.**

• **Dynamic tests**, mostly by carrying out exhaustive sets of execution:
 - reachability
 - non-determinism
 - deadlock
 - usage of transitions

• **Code generation:** specification (parts) can be automatically translated into C, Ada, VHDL, Verilog.