Timed Languages

- A time sequence $\tau = \tau_1 \tau_2 \dots$ is an infinite sequence of time values $\tau_i \in R$ with $\tau_i > 0$, satisfying the following constraints:
 - Monotonicity: τ increases strictly monotonically so that $\tau_i < \tau_{i+1}$ for all i≥1.
 - − Progress: For every t∈ R, there is some i≥1 such that τ_i >t.
- A timed word over an alphabet Σ is a pair (σ,τ) where σ=σ₁σ₂...
 is an infinite word over Σ and τ is a time sequence. A timed language over Σ is a set of timed words over Σ.
- Viewed as an input to an automaton a timed word (σ, τ) presents the symbol σ at time τ .

Examples of Timed Languages

 $L_1 = \{ ((a \mid b)^{\omega}, \tau) \mid \forall i. ((\tau_i > 5.6) \to (\sigma_i = a)) \}$

 Language consists of all timed words (σ,τ) such that there is no b after time 5.6.

$$L_2 = \{ ((ab)^{\omega}, \tau) \mid \forall i. ((\tau_{2i} - \tau_{2i-1})) < (\tau_{2i+2} - \tau_{2i+1})) \}$$

 Language consists of all timed words (σ,τ) in which a and b alternate and for successive pairs of a and b the time difference between a and b keeps increasing.

Timed Transition Tables

- The choice of the next state depends on the input symbol read and on the time of the input symbol relative the the times of the previously read symbols.
- Thus, real-valued clocks are associated with the transition table:
 - Clocks can be independently reset to 0 with any transition.
 - Clocks keep track of time elapsed since last reset.
 - Transitions can put constraints on clock values: a transition may be taken only if the current values of the clocks satisfy the associated constraints.
 - All clocks increase at a uniform rate, counting time with respect to a fixed global time frame; they do not correspond to locals clocks of different components in a distributed system.

 $L \approx \{ ((ab)^{\omega}, \tau) \, | \, \forall i. (\tau_{2i} < \tau_{2i-1} + 2) \}$

Timed Transition Tables

- For a set X of clock variables, the set Φ(X) of clock constraints δ is defined inductively by
 δ:= x≤c | c≤x | ¬δ | δ₁∧δ₂
 where x is a clock in X and c is a constant in Q, the set of nonnegative rationals.
- A clock interpretation ν for a set X of clocks assigns a real value to each clock, ie a mapping from X to R.
- A timed transition table A is a tuple (Σ,Q,Q₀,C,E) where Σ is a finite alphabet, Q is a finite set of states, Q₀⊆Q is a set of start states, C is a finite set of clocks, and E ⊆ Q×Σ ×Q ×2^c×Φ(C) gives the set of transitions. An edge (s,a,s',λ,δ) represents a transition from state s to state s' on input symbol a. The set λ⊆C gives the clocks to be reset with this transition and δ is a clock constraint over C.

Timed Runs

- A run r, denoted by (s,v), of a timed transition table (Σ,Q,Q₀,C,E) over a timed word (σ,τ) is an infinite sequence of the form
 - $r:(s_0, v_0) \xrightarrow{\sigma_1}{\tau_1} \rightarrow (s_1, v_1) \xrightarrow{\sigma_2}{\tau_2} \rightarrow (s_2, v_2) \xrightarrow{\sigma_3}{\tau_3} \rightarrow ...$ with $s_i \in S$ and $v_i \in [C \rightarrow R]$, for all $i \ge 0$, satisfying the following requirements:
 - Initiation: $s_0 \in Q_0$, and $v_0=0$ for all $x \in C$.
 - Consecution: for all i≥0, there is an edge in E of the form $(s_{i-1}, \sigma, s_i, \lambda, \delta)$ such that $(v_{i-1} + \tau_i \tau_{i-1})$ satisfies δ_i and v_i equals $[\lambda_i \rightarrow 0] (v_{i-1} + \tau_i \tau_{i-1})$

The set inf(r) consists of those states $s \in Q$ such that $s=s_i$ for infinitely many $i \ge 0$.

Timed Run: Example

Consider a timed word (a,2) →(b,2.7) →(c,2.8)→ (d,5) given as input to the following timed transition table:

 $r:(s_0,[0,0]) \xrightarrow{a}{2} (s_1,[0,2]) \xrightarrow{b}{2.7} (s_2,[0.7,0]) \xrightarrow{c}{2.8} (s_3,[0.8,0.1]) \xrightarrow{d}{5} (s_0,[3,2.3]).....$

Timed Regular Languages

- A timed Büchi automaton TBA is a tuple $(\Sigma, Q, Q_0, C, E, F)$ where (Σ, Q, Q_0, C, E) is a timed transition table and $F \subseteq S$ is a set of accepting states. A run r=(s,v) of TBA over a timed word (σ,τ) is called an accepting run iff $inf(r) \cap F \neq \emptyset$.
- For a TBA A the language L(A) of timed words it accepts is defined as the set
 L(A) = {(σ,τ) | A has an accepting run over σ,τ)}.
- A timed language L is a timed regular language iff L=L(A) for some TBA A.
- The class of timed regular languages is closed under (finite) union and intersection.

Timed Muller Automata

- A timed Muller automaton TMA is a tuple (Σ,Q,Q₀,C,E,F) where (Σ,Q,Q₀,C,E) is a timed transition table and F ⊆ 2^Q specifies an acceptance familiy. A run r=(s,v) of TMA over a timed word (σ,τ) is called an accepting run iff inf(r)∈ F.
- For a TMA A the language L(A) of timed words it accepts is defined as the set
 L(A) = {(σ,τ) | A has an accepting run over σ,τ)}.
- A timed language is accepted by some timed Büchi automaton iff it is accepted by some timed Muller automaton.

State Transition Diagrams

- State transition: When event γ occurs in state A, if Condition P is true at the time, the system executes action a and transfers to state C.
- State diagrams are directed graphs with nodes denoting states, and arrows (labelled with the triggering event, guarding conditions and action to be executed) denoting transitions.
- Example:

• Problem: all combinations of states have to be represented explicitly, leading to exponential blow-up.

State Transition Diagrams

- Disadvantages:
 - No structure (no strategy for bottom-up of top-down development)
 - State-transition diagrams are flat, ie without hierarchy
 - Uneconomical wrt transitions (eg interrupt): exponential blow-up
 - Uneconomical wrt states: exponential blow-up
 - Uneconomical wrt parallel composition: exponential blow-up
 - Inherently sequential; parallelism cannot be expressed in a natural way

Statecharts

- Visual formalism for describing states and transitions of a system in a modular fashion
- Extension of state-transition diagrams:
 - hierarchy
 - concurrency / orthogonality: AND/OR decomposition of states together with inter-level transitions
 - communication, including broadcast for communication between concurrent components
- Can be used as stand-alone behavioral description or as part of a more general design methodology
- statecharts = state diagrams + depth + orthogonality + broadcast communication

State Levels: Clustering and Refinement

- Rounded rectangles (called boxes): states
- Encapsulation of boxes: hierarchy relation / clustering
- Arrow: transition
- Arrow labels: <event>(<condition>)/<action>
 - All components are optional
 - Syntax for events and conditions is closed under boolean operations <u>or</u>, <u>and</u> and <u>not</u>
- Three types of states: basic states, OR-states, ANDstates.

State Levels: Clustering and Refinement

- Semantics of OR-State (D in example): XOR of A and C. To be in state D the system must be either in A or in C, and not in both. D is abstraction of A and C.
- β is a common property of A and C: β leads from them to B.
- Default state: denotes state that is entered when abstraction of set of states is entered.

History

- Enter-by-history: enter the state most recently visited.
 - H: history is applied only on the level in which it appears.
 - H^{*}: history is applied down to the lowest level of states.

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner.

Orthogonality

- AND decomposition: being in a state the system must be in all of its AND components.
- Example: state Y consiting of AND components A and D. Y is orthogonal product of A and D.
- If Y is entered, the system enters the combination (B,F) by the default arrows. If event α occurs, it transfers B to C and F to G simultaneously, resulting in the new combined state (C,G).
 -> Synchronization.

• If μ occurs, it affects only the D components: independence.

Source [1]

 Due to 'in G' conditions the AND decomposition is not necessarily a disjoint product of states since some dependence between components can be introduced.

Conditions and Selection Entrances

- Circled connectives for abbreviating more complex entrances to substates:
 - C: conditional.
 - S: selection. Event is selection of one of a number of clearly defined options chosen to modelled as states.

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner.

Delays and Timeouts

- Event expression timeout(event, number): represents event that occurs precisely when the specified number of time units have elapsed from the occurrence of the specified event event.
- Graphical notation for special case timeout (entered state, bound)

Unclustering

- Laying out parts of the startchart not within but outside of their natural naborhood. Useful for manuals and computerized use.
- Example:

Actions and Activities

- Pure statecharts represents the control part of a system responsible for making time-dependent decisions that influence the system's entire behavior.
- Ability of statecharts to generate events and to change the value of conditions provided by attaching /S to the label of a transition where S is an action carried out by the system.
- Actions: instantaneous occurrences that take ideally zero time. Output in automata-theretic terms.
- Activities: are durable, ie take nonzero amount of time.
- Associated with each activity X:
 - two special kinds of actions to start and stop activities: start(X), stop(X)
 - special condition: active(X)

Actions and Activities

- Actions can be associated with
 - the entrance in and the exit from a state
 - transitions
- Activity X is carried throughout a state A: action start(X) is carried out upon entering A and stop(X) upon leaving A.
- Example:

Static Reactions

- Each state can be associated with static reactions (SRs) to be carried out (whenever) enabled as long as the system is in (and not exiting) the state in question.
- Syntax: e[c]/a
- Semantically: each SR in state S can be regarded as transition in a virtual substate of S that is orthogonal to its ordinary substates and to the other SRs of S.
- Example:

Special Events, Conditions and Actions

	EVENTS	CONDITIONS	ACTIONS
in statechart	entered(S)/en(S) exited(S)/ex(S)	in(S)	clear-history(state) clear-history(state*)
connecting statecharts to activities	started(A) stopped(A)	active(A) hangig(A)	start(A) / st!(A) stop(A) suspend(A) resume(A)
information items	read(D) written(D) true(C) false(C)	D=exp D <exp D>exp </exp 	D:=exp made_true(C) make_false(C)
time	timeout(E,n)		schedule(Ac,n)/sc!(Ac,d)

The STATEMATE System

- Graphical working environment for the specification, analysis, design and documentation of large and complex reactive systems.
- Three points of views, each covered by own visual formalism:
 - structure: module charts
 - functionality: activity charts
 - behavior: statecharts
- Statecharts used to depict reactive behavior over time.
- Each visual formalism admits a formal semantics that provides each feature, graphical and non-graphical alike with a precise and unambiguous meaning.
- Goal: enabling user to specify a system, and to run, debug and analyze the specifications and designs that result from the graphical languages.

The three Views of a SUD

Structural View

- Provides hierarchical decomposition of SUD into its physical components, called modules (e.g. piece of hardware, or subroutines or blocks of software).
- Identifies information that flows between modules (data and control signals).
- Visual specification language: module-charts
 - Modules: rectilinear shapes
 - Storage modules: dashed sides
 - Envionment modules: dashed-line rectangles external to that of the SUD itself
 - Sub-module relationship: encapsulation
 - Information flow: arrows / hyperarrows

Module-Charts Example (EWS)

Functional View

- Identifies a hierarchy of activities with the details of the data items and control signals that flow between them: functional decomposition of the SUD.
- Non-committing semantics, ie. it only asserts that something can happen. No specification of dynamics, eg when activities will be activated, whether/when they terminate, etc.
- Visual specification language: activity-charts:
 - Activities: rectilinear shapes
 - flow of data items: solid lines
 - flow of control items: dashed lines
 - Data-stores: represent databases, buffers, etc.
 - Control activities: behavioral view of the system; appear as empty boxes in the activity-chart (with rounded edges). Their contents are specified by statecharts.

Activity-Charts Example (EWS)

Module and Activity Charts

Behavioral View

- Specifies control, ie when, how and why things happen as the SUD reacts over time.
- Visual specification language: statecharts

Statecharts Example (EWS)

Structure of STATEMATE

Advanced Features (1)

- Consistency and completeness tests, static logic tests. Examples:
 - module hierarchy consistent with activity hierarchy?
 - cyclic definitions?
- Object List Generator (OLG): querying the model of the SUD as described by the modelling languages.
- Single step execution:
 - Step: one unit of dynamic behavior
 - At the beginning and end of a step, the SUD is in a legal status.
 - Status: currently active states and activities, current values of variables and conditions, etc.
 - During a step, the environment activities can generate external events, change the truth values of conditions, and update variables and other data items.

Advanced Features (2)

- Batch simulation: carry out many steps in order, controlled by a simulation control program (SCP) written in SCL (Simulation Control Language).
- Breakpoints, simulation reports.
- Dynamic tests, mostly by carrying out exhaustive sets of execution:
 - reachability
 - non-determinism
 - deadlock
 - usage of transitions
- Code generation: specification (parts) can be automatically translated into C, Ada, VHDL, Verilog.