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ABSTRACT dynamically allocated objects and pointers is by a store-based op-

erational semantics, e.g., see [15]. This semantics is very natural
because it closely corresponds to concepts of the machine architec-
(lure. Moreover, it is possible to compute the effect of a procedure
pon alarge heap fromits effect on subheaps. This is the semantic ba-
sis for O’'Hearn’s “frame rule” [8, 15], which uses assertions about
disjoint parts of the heap: the post condition of a procedure call is
inferred by combining assertions that hold before the call with ones
that characterize the effect of the procedure call.

In programming languages such as Java, where addresses cannot
be used explicitly (in contrast to Csast statements), it is possi-
ble to represent states in a more abstract way because any two heaps
with isomorphic reachable parts are indistinguishable. In particu-
lar, garbage cells have no significance. This leads to the notion of
storeless semantics, which was pioneered by [10]. There, states are
represented as aliases between pointer access paths.
1. INTRODUCTION A first step in many heap-abstractions is to abstract away from

The long-time research goal of our work is to develop compile- specific memory addresses, e.g., [5, 7,9, 18-20]. A storetmss
time algorithms for automatically verifying properties of impera- cretesemantics has already done this step, which relieves the de-
tive programs that manipulate dynamically allocated storage. The signer of an abstraction from having to do it. Thus, it is natural to
goal is to verify properties such as the absence of null dereferencesbase powerful pointer (shape) analysis algorithms on storeless se-
the absence of memory leaks, and the preservation of data-structurenantics. Unfortunately, existing storeless semantics associate the
invariants. The ability to reason about the effects of procedure entire heap with each procedure invocation and class instantiation,
calls is a crucial element in program verification, program analy- which makes it difficult to support procedure and data abstraction.
sis, and program optimization. This paper presents an approach toAnother problem with storeless semantics is that it is hard to relate
the modular analysis of imperative languages with procedures andproperties of memory cells before and after a call. As a result, it
dynamically allocated storage, based on an abstract interpretationis hard to scale these methods to prove properties of real-life pro-

The goal of this work is to develop compile-time algorithms for
automatically verifying properties of imperative programs that ma-
nipulate dynamically allocated storage. The paper presents an anal
ysis method that uses a characterization of a procedure’s behavio
in which parts of the heap not relevant to the procedure are ig-
nored. The paper has two main parts: The first part introduces
a non-standard concrete semanti€s§ L, in which called proce-
dures are only passemirts of the heap. In this semantics, objects
are treated specially when they separate the “local heap” that can
be mutated by a procedure from the rest of the heap, which—from
the viewpoint of that procedure—is non-accessible and immutable.
The second part concerns abstract interpretatiah®f and devel-

ops a new static-analysis algorithm using canonical abstraction.

of a novel non-standard storeless semantics. grams. By “scaling”, we mean not just cost issues but also preci-
. sion. In particular, after a procedure call some information about
1.1 Store-based vs. Storeless Semantics the calling context may be lost.

A straightforward way to specify semantics of programs with In this paper, we present a first step towards addressing the afore-
- . ) _ mentioned scaling issues by (i) developing a storeless semantics
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to the procedure. Toward this end, the paper introduces a non-

standard storelessoncretesemantics,LSL, for Localized-heap
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The paper has two main parts: The first part (Sec. 4) concerns
LSL, the non-standard concrete storeless semantics. The second P € prog ::= rcdeclindecl
part (Sec. 5) concerns abstract-interpretation of this semantics. rcdecl ::= recordt:= {tname f}

LS L is based on the following ideas: Objects in the heap reach- thame = int]|t
able from an actual parameter are treated differently when they sep- fndecl ::= tnamep(tnamez) :=vdeclst
arate the “local heap” that can be accessed by a procedure from the vdecl := tnameVarld
rest of the heap, which—from the viewpoint of that procedure—is | st € stms = z=c|z=y| z=yopz|z=y.f |
non-accessible and immutable. We call these objadisoints An z.f=null | z.f=y | z = alloct |
objectbelongs to the local-heaghen it is reachable from a pro- y=p(T) | Ib: st | while (cnd) do st od |
cedure’s actual parameters. Such an objectogtpointwhen it is st; st | if (cnd) then st else st fi
reached via a pointer-access path that starts at a variableeofch cnd = zx==y|z!=yla==cl|z!=c
ing call and does notraversethe local-heap. When a procedure ¢ € const = null|n
returns, the cutpoints are used to update the caller’s local-heap with

the effect of the call. Because our goal is to perform static analy-
sis, LS L is astoreless semanti¢&0]; every dynamically allocated Figure 1: Syntax of EAlgol.
objecto is represented by the set afcess paththat reacto. In
particular, unreachable objects are not represeng8. is dif-
ferent from previous storeless semantics based on pointer-access . . .
paths [5,20] in the following way. It does not represent access pathsthese types using pointer vanable;. Parameters are passed by value.
that start from variables of pending calls in the “local state” of the Formal parameters cannot be assigned to. Functions return a value
current procedure. This means that a procedure has a local viewPY @ssigning it to a designated variabés . o
that only includes objects that are reachable from the procedure’s 1€ Syntax ofEAlgol is defined in Fig. 1. The notation de-
parameters and, in addition, any objects that it allocates. notes a sequence ofs. We define the syntactic domainsy €

We characterize the manner in whigls £ simulates a standard ~ Va71d, f € Fieldld, p € Funcld, t € Typeld, andlb & Labels
store-based semantics and identify a class of observations for which®! variables, field names, functions identifiers, type names, and
LSL is equivalent to the standard store-based semantics. This al-Program-labels, respectively. For a functionV;, denotes the set
lows us to prove properties ranging from the absence of runtime of its local variables and’, denotes the set‘of its formal parame-
errors to partial and total correctness with respect to the standard!€'s: We assume;, C V;, and that all the variables i}, \ I}, are
store-based semantics. declared at the beginning of a function declaration.

The second part of the paper us€S.L as the starting point 292 Running Example
for static-analysis algorithms that treat the heap in a more local, " o ) )
more modular way than previous work. In this part of the paper,  1he EAlgol program shown in Fig. 2 is our running exam-
we present a new interprocedural shape-analysis algorithm for pro-Ple. The program consists of a type definition for an element in a
grams that manipulate dynamically allocated storage. The algo- linked list SII ); three list-manipulating functions: creatert( ),
rithm is based on an abstraction 66£. The new algorithm can  destructive appendipp), and destructive reverseegerse ); and
prove properties of programs that were not automatically verified @main function. o _
before (e.g., destructive merge of two singly-linked lists by a re- The program aIIoc_ates t_hree acyclic linked Ilst_s. It then d_estruc-
cursive procedure, see Fig. 18). Furthermore, the analysis is donelively appends the list pointed-to 4 to the tails of the lists
in a way that is more likely to scale up. In particular, our analysis Pointed-to bytl andt3 . As a result, at program poitif., just
benefits from the fact that the heap is localized: the behavior of beforereverse is invoked,x points-to an acyclic list with five
a procedure only depends on the contents of its local-heap. This€lementsz points-to an acyclic list with five elements, and the two

allows analysis results to be reused for different contexts. lists share their last two elements as a common tail. _
] The invocation ofreverse , which is the core of our running
1.3 Outline example, (destructively) reverses the list passed as an argument.

The remainder of the paper is organized as follows: Sec. 2 setsAS @ result, atb,, reverse s return-sitey points-to the head of
the scene by definingAlgol, a simple imperative language, and  the reversed-list. Note that the shared tail of the list pointed-to by
defining its standard store-based semantics. It also introduces ou has also changed.
running example. Sec. 3 defines cutpoints and describes their us _ _ .
in LSL. Sec. 4 defineg€S L semantics fol£Algol and states its 2.3 GIOba_‘I Heap Store _Based Semantn:_s _
properties. Sec. 5 presents the shape-analysis algorithm. Sec. 6 We now define th&/SB semantics folEAlgol. For simplic-

reviews closely related work. Sec. 7 concludes our work. ity, the semantics tracks only pointer values and assumes that every
pointer-valued field or variable is assignedll before being as-
2 PRELIMINARIES signed a new valukIn addition, we assume that before a function

terminates it assignaull  value to every pointer variable that is

In this section, we introduce a simple imperative language called t 4 formal parametdr.

EAlgol. We define its standard semantics, which is operational,
large-step, store-based (as opposed to storeless), and global, i.e!Special care need to be taken when handling statements in which
the entire heap is passed to a procedure. We refer to this semanticthe same variable appears both in left-side of the assignment and in

asgShB, for Global-heap Store-Based its right-side, e.g.x = x.f . Such statements require additional
' source-to-source transformations and the introduction of temporary
2.1 Syntax ofEAlgol variables.

. . . . . These conventions simplify the definition of ba@ity 3 semantics
Programs i Algol consist of a collection of functions includ-  and £5.: in principle, d?ﬁgent ones could be used with minor

ing amain function. The programmer can also define her own effects on the capabilities of our approach. For clarity, our example
types (Jcb® la C structs) and refer to heap-allocated objects of programs do not adhere to these restrictions.



record Sl := { Sll n; int d }
Sl reverse(SIl h):= Ib.:

Sl p,q.t;

p=h;

while (p!=null) do
g=p.n; p.n=t; t=p; p=q od;
ret =t Ib,:
int main():=
Sl x,y,z,t1,12,t3;
tl=crt(3); t2=crt(2); t3=crt(3);
x=app(t1,t2);
z=app(t3,t2);
t1=null; t2=null; t3=null;
b .: y = reverse(x); b ,:
ret=0

Figure 2: The running example. The code of functiongrt and
app appears in App. A.
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Val = Loc U {null}

Eny, =V, — Val

Heap, = Loc x Fieldld — Val
P = 2%° x Eny, x Heap,
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Figure 3: Semantic domains of theFS5 semantics.

Fig. 3 defines the semantic domainkoc is an unbounded set
of memory locations. Anemory statéor a functionp, o, € X7,
keeps track of the allocated memory locatiohsan environment
mappingp’s local variables to valueg, and a mapping from fields
of allocatedlocations to values;. Due to our simplifying assump-
tions, a value is either a memory locationrorl.

(body ofp, (Le, pe, he)) 5 (L, pa, ha)

G
<y = p(mb e 7$k)7 <LC7 Pec, hL>> had <L7'7 Pr, h7>
where
_ _J pe(wi) V= 2z _
Le = Le, pe(v) = { null otherwise he = he

Ly =Ly, pr = pc[y = pE(ret)L hy = ha

Figure 5: Inference rule for function invocation in the GSB se-
mantics, assuming the formal variables op are z1, ... , zx and
that p’s return value is a pointer.

each variable is depicted as an arrow from the variable name to the
memory location it points-to. The value of a field is depicted by a
directed edge labeled with the field name.

The invocation ofeverse starts in statery,. The heap ob¢,
is identical to the one o&¢, but its environment only maps,
reverse 's formal parameter, td, the value of the actual param-
eterx. The execution ofeverse 's body ends withret pointing
to the head of the reversed list. The memory state at the exit point,
Ib., is denoted by ¢, the state after the invocation téverse
is denoted by ;. Note that the heap iag is as inreverse s
exit-point, and the environment is as in the call-site, except that the
return value et ) is assigned tg.

2.4 Observable Properties

In this section, we introduce access paths, which are the only
means by which a program can observe a state. Note that the pro-
gram cannot observe location names.

DEFINITION 2.1 (RELD PATHS). Afield pathd € A = Fieldld*
is a (possibly empty) sequence of field identifiers. The empty se-
quence is denoted hy

DEFINITION 2.2 (ACCESS PATH. Anaccess patlx = (x,0) €
Vp» x A of a functionp is a pair consisting of a local variable of
and a field path.AccPath, denotes the set of all access paths of
functionp. AccPath denotes the union of all access paths of all

The meaning of statements is described by a transition relation ¢, ctions in a program.

G c (0@ x stmg x o¢. Fig. 4 shows thaxiomsfor assignments.
Theinference rulefor function calls is given in Fig. 5. All other

statements are handled as usual using a two-level store semantic

for pointer languages.
Example. The memory state &b., the call-site taeverse ,is
depicted graphically in Fig. 6 (labelex,). Allocated locations are

depicted as rectangles labeled by the location name. The value o

(x = null, (L, p, h)) % (L, p[x — null], h)
(x =y, (L,p, b)) = (L, plw = p(y)],
(x=y.£, (L, p, b)) < (L, plz = h(p(y (
(x.f =null, (L, p,h)) % (L, p, h(p(z), f) — null]) ~ (
(2. =y, (L,p,h)) S (L, p,hl(p(), f) = pw)]) (2
(x = alloc ¢, (L, p, h)) G (LU{l}, plz — 1], RUI(D)) (

)
): DI, h)

Figure 4: Axioms for atomic statements in theGSB semantics.
The side-conditions are:(1) p(y) # null, (2) p(z) # null, and
(8) 1 € L. I initializes all pointer fields at  to null.

Apart from the above formal definitions, we will sometimes use
]éhe notationx.n.n  for access paths, because its syntax is famil-
iar from a number of programming languages, where it denotes a
sequence of field dereferences. Because states and access paths
are always associated with a (unique) functioin the rest of the

faper, we omip whenever it is clear from the context. Also, to

simplify notation, we assume that we work with a fixed arbitrary
programP.

The value of an access path= (z, ) in state(L, p, h), denoted
by [e]c(L, p, h), is defined to bé.(p(z), §), where

h: Val x A — Val such that

v ifd = ¢

h(h(v, f),8") ifé = f6', v € Loc
null otherwise

h(v,8) =

Note that the value of an access path that traversesl-aalued
field is defined to bawull. This definition simplifies the notion of
equivalence between th@SB semantics andCSL, our new se-
mantics. Alternatively, we could have defined the value of such a
path to bel. The semantics given in Fig. 4 checks that a null-
dereference is not performed (see the side-conditions listed in the
caption).



{z}, {z.n}, {z.n.n}, {z.n.n.n, zn.nn}, {znnnn, znnnn},
o0& Ac:
{z}, {z.n}, {z.n.n}
s A {hY,{hn}, { hnn} h.n.n.n, h.n.n.n.n
G- : ’ R AR cpl ’ cpln
- w. h, cpl.n.n.n cpln.n, cpln, cpl
76+ A% { retn.n.n.n }’{ retn.n.n }’{ retn.n (] retn , {rety
z, y.n.n.n.n, y.n.n.mn, y.n.n,
ol AT { z.n.n.n.n.n }’ { z.n.n.n.n }’ { z.n.n.n }’ {yn} {y},
{z},{zn}, {znn}
global heap local heap cpl = {hﬁn}

Figure 6: Memory states that arise during the execution of the running example according to th&SB semantics (left column)
and the £LS L semantics (right column). We show the memory states db.., the call-site toreverse (first row); Ib., the entry to
reverse (second row);lb,, reverse s exit point (third row); and Ib,., the return-site from reverse (fourth row). For the local-
heap semantics, the figure shows only the heap (sets of aliased access paths); the memory states,db., Ib.., and b, are defined as

o8 = (0, A°), 0 = ({{hmn.nn}}, A%), 0 = ({{hn.nn}}, A7), and o} = (0, A”) respectively.

DEFINITION 2.3 (ACCESSPATH EQUALITY). Access paths reachable from the procedure’s actual parameters. The downside
andg areequalin a given stater, denoted bfja = S]a(oq), if of this approach is that the memory state just after the call cannot
they have the same value in that state, [@]c(cc) = [Blc (o). always be defined in terms of the state prior to the call. The intu-
An access path isqual to null, denoted byja = null]g (o), itive reason for this deficiency is that the description of an object
if [e]a(og) = null. may change due to destructive updates. For example, in the run-

ning example, to determine that the pointer-access patha

Our semantics is a natural semantics; the stack of activation recoré¢idz.n.n.n  are aliased after the invocation mverse , we
is maintained implicitly. However, we need the notion of an access need to know that the list element pointed-totop.n.n  when
path that starts at a variable of a pending call (i.e., not the current the execution ofeverse begins, is pointed-to byet.n  when
call). In a small-step semantics, this would be an access path thatthe execution ends. To capture this kind of temporal relationship,
starts at a variable allocated in the activation record of a pending LS L tracks the effect of a function arutpoints Cutpoints are the
call. We use the term pending variablefor a local variable of objects that separate the part of the heap that an invoked function
a pending call, and pending access patfor an access path that  can access from the rest of the heap (excluding the objects pointed-
starts at a pending variable. When we wish to emphasize that ato by actual parameters).
variable (resp. access path) is of the current call, we use the term
acurrentvariable (resp. &urrentaccess path). For example, in
stateog, at the entry taeverse , x is a pending variable, and
z.n.n.n is a pending access path; the only current variable is
andh.n.n.n is a current access path.

DEerINITION 3.1. (Cutpoints) A cutpoint for an invocation of
functionp is a heap-allocated object that, in the program state in
which the execution gb’'s body starts, is: (i) reachable from a
formal parameter o) (but not pointed-to by one) and (ii) pointed-
to by a pending access path that does pass througlany object
that is reachable from one @fs formal parameters.

3. CUTPOINTS AND THEIR USE For example, in memory statef;, the list element at location

In this section, we define cutpoints and describe their use in [ is a cutpoint because it is pointed-to by thdield of the list
LSL. To assist the reader, we provide some intuition by referring element at locatioty,, which is not reachable from the (only) actual
to the global store-based semantics (see Sec. 2.3) and to a smallparametex. For an additional example, see Fig. 7.
step (stack-based) operational semanti€sSL is a storeless se- Technically,£S £ usescutpoint-labelgto relate the post-state of
mantics, i.e., memory cells are not identified by locations. Thus, the function with its pre-state. Cutpoint-labels mark the cutpoints
we cannot talk about locations as in Sec. 2.3. Instead, we use theat—and throughout—an invocation.
termobjects

In LS L, every dynamically allocated objeetis represented by
the set of pointer-access paths that reack/nlike existing store-
less semantics [5], iILSL, pending access paths are not repre-
sented as parts of the local state of the current procedure. The In every function invocationLSL labels all the cutpoints. A
advantage of our approach is that when a procedure is invoked,cutpoint-label is the set of all access paths that start with a for-
it operates only on a part of the heap, namely, the objects that aremal parameter (of the invoked function) and point-to the cutpoint

DEFINITION 3.2. (Cutpoint Labels) A cutpoint-label cpl €
2F» X4 for functionp is a set of access paths that start at a for-
mal parameter op. The se2»*2 is denoted byCPLbs,,.



DEFINITION 3.4 (GENERALIZED ACCESS PATH$. Agener-
alized access patfor a functionp is either an access path of
or a cutpoint-anchored path gf. GAccPath, denotes the set of
all access paths of functign GAccPath denotes the union of all
access paths of all functions in a program.

S When there is no risk of confusion, we abbreviate a generalized
% T access path of the forrr, ¢) by r. Note thatr can be either a
£ variable, or a cutpoint-label.
é foo
e o REMARK 3.5. Cutpoint-labels isolate the information about the
@ “ part of the heap that a function cannot access, togharing pat-
—— Heap ternof the cutpoints, i.e., to the set of access paths that—at the entry
to the function—point-to a cutpoint. Furthermore, the isolation is
achieved in a parametric way: although a cutpoint-label expresses
Figure 7: An illustration of the cutpoints for an invocation in the fact that an object is also pointed-to by a pending access path,
a store-based small-step (stack-based) operational semantics. it is described in terms of the invoked function’s formal parame-
The figure depicts the memory state at the entry twoo. The ters. This allows us to infer the meaning of a cutpoint-label in a
stack of activation record is depicted on the left side of the di- context-independent way.
agram. Each activation record is labeled with the name of the
function it is associated with. Heap-allocated objects are de- REMARK 3.6. Note that because of the “garbage-collecting na-

picted as rectangles labeled with their location. The value of  ture” of storeless semantics, there is a non-trivial technical dif-
a pointer variable (resp. field) is depicted by an edge labeled ficulty in obtaining a local semantics for the storeless model. If
with the name of the variable (resp. field). The shaded cloud & garbage-collection scan was to collect the heap using only the
marks the part of the heap thatzoo can access. The cutpoints ~ Procedure’s local variables as the roots, then elements would be
for the invocation of zoo (u7 and u9) are heavily shaded. Note garbage collected that are accessible in the global state; adding the
that «10 is not a cutpoint although it is pointed-to by pending cutpoint-labels to the set of “roots” prevent this potential source of
access paths that do not traverse through the shaded part of unsoundness.

the heap, e.g.x2 and y.fA.fl . This is becauseu10 is also

pointed-to by h, zoo’s formal parameter. 4., THELOCALIZED-HEAP STORELESS SE-
MANTICS
In this section, we defin€SL, the Localized-heap Store-Less

when the function execution starts. The label of a cutpoint does not Semantics. The semantics is a natural semantics and, as before,
change throughout the execution of the function’s body, even if the tracks only pointer values.
heap is modified by destructive updates. To define the semantics, we use the functierdefined in Fig. 9.

For example, the fourth list elemenbirs listis a cutpointforthe It is used as an infix operator. The applicatierd concatenates
invocationy=reverse(x) . The label of this cutpoint i§h.n.n.n} the sequence of field identifiedsto o. We say that a generalized
becauser.n.n.n is the (only) access path that points-to the cut- access path is aprefixof a generalized access pathdenoted by
point at the entry to the function. A good analogy for the role of « < 8, when there is a field path € A, such thai3 = «.5. We
cutpoint-labels in our semantics is the use of auxiliary variables in say that is aproper prefixof 3, denoted byx < 3, whend # e.
formal verification. Auxiliary variables are used to record variable The function-. is lifted to handle sets of access paths and sets of
values at the entry to a function; a cutpoint-label is used to record sequences of field identifiers.
the access paths that reach a cutpoint at function entry. To empha- n addition, we make use of ttfés¢ functional, well-known from
size this similarity, we use the notatiGhwherea € CPLbs, for functional programming/iat M returns the set of all elements of
cutpoint-labels for functiop. _ _ M, if M is a set of sets. Formallylat M % {2 | 34 € M

LS L is able to infer the effect of an invoked functiononthe heap . . A}
of its caller by including in the representation of an object all the
field paths that reach it and start at a cutpoint. 4.1 Memory States

] In this section, we define the representation of memory states in
DEFINITION 3.3 (QUTPOINT-ANCHORED PATHS. Acutpoint-  £g, Traditionally, a storeless semantics represents the heap by an

anchored patha = (cpl, §) € CPLbs, x A for a functionp is a equivalence relation over a set of access paths, where equivalence
cutpoint-label for function p and a (possibly empty) sequence of ¢jasses (implicitly) represent allocated objects. For readability, we
fields. use the equivalence classes directly.

] A memory statéor a functionp is a pair(CPL,, A,) of a set of

For example, at the memory statiaf\terthe executioevarse s cutpoint-labels, (denoted b¢/PL,) and a heap (denoted by,,).
body, the cutpoint-anchored pafth.n.n.n}.n is aliased with the A heap is a finite (but unbounded) set of objects. An object (de-
access pathet.n.n. From this information, our semantics can in- noted byo) is described by a (possibly infinite) set @éneralized
fer that in themain function, at the state after the invocation of access paths. Fig. 8 gives the semantic domains usé8 ihfor a
reverse |, z.n.n.n.n is aliased withy.n.n. memory state of a functiop.

Technically, during the invocation of a function, an objectisrep- A memory statg CPL,, A,) at a given point in an execution is
resented by the access paths and cutpoint-anchored paths that pointomposed of the labels of all the cutpoints of the current invocation
to it. (CPL,) and a representation of the heap,] at that the point in



r € Root, =V, U CPLbs .: GAccPath x A — GAccPath s.t.
P p P
o € GAccPath, = Root, x A , def y
’ - . 0).0" B 56

0 € Objh = 20Achathy Objects (r. ) (r. 60

147 Ap c Heapi — 2()bj’L7 Heaps . 2GAcuPuth X A — 2GAucPath st
» __ oCPLbs P

or e ¥ =2 ? x Heap’ Memory state as d:ef{a.é la€al

Figure 8: Semantic domains of memory states for functiorp. .; QGAccPath o oA gGAccPathg ¢

We use the syntactic domaind/,, CPLbs,, and GAccPath, as
semantic domains, too (and use italics font to denote a seman-

tics value.) [|: GAccPath x Heap; — Obj s.t.
[oz]Ad:ef{BEa\aGA,OzEa}

a.D d:ef{a.5 | €a,6 € D}

the execution. To exclude states that cannot arise in any program, | rem: Heap X 2G4celath _ Heap st
we now define the notion afdmissible states
rem(A,a) def (map(ro.o\ a.A) A) \ {0}

DEFINITION 4.1 (ADMISSIBLE MEMORY STATES). Amemory
state(CPL,, A,) for a functionp at a given point in an execution add: Heap x 294" x GAccPath — Heap), S.t.
is admissibleiff (i) A generalized access path points-to (at most) add(A, a, ) def map(ho.oUa{s € A | a.d € o}) A
one object, i.e.Yo,0' € A, if o # o, thenono = §; (i) A T
is right-regular, i.e.,Yoi,02 € A, if a,8 € 01 anda.d € o2
thens.d € oo; (iii) A, is prefix-closed, i.e., if.f € flat Ap, then
a € flat Ap; and (iv) a root of every access path in the description
of any object is either a local variable pfor a label of one of the
cutpoints, i.e., ifr, 8) € flat A, then eitherr € V,, or r € CPLy;

W) 0 ¢ A; (vi) CPL, satisfies the following requirements: (a) the  opjects are represented in terms of the generalized access paths that
cutpoint-labels inCPL,, are mutually disjoint, (b)CPL,, is right- start either withs, or with {{hmn}}
regular (but not necessarily-prefix closed), (c CPL,. T

Figure 9: Helper functions.

The first three conditions are standard in storeless semantics.4.2 Inference Rules
The fourth con(_jition Ii_mits the_a set of cutpoint—anchored_ paths th_at The meaning of statements is described by a transition relation
are tracked during an invocation to be rooted at a cutpoint of the in- Z, ~ (01, x Stmg x o1, We give axioms for assignments and an in-

vocation. The fifth condition is because we only represent Objects forence ryle for procedure calls in Fig. 10 and Fig. 11, respectively.

that are pointed-to by a current or a pending access path. The sixthy | other statements are handled in the standard way [11]. To sim-
requirement captures the fact that the set of cutpoints is actually aplify notation, we assumel with a certain index (resp. prime) to
subset of the objects in the heap when the function is invoked. be the heap ,component of a state with the same index (resp.

BecauseCSL preserves admissibility of states (see [17]), inthe  jme) e use the same convention for indexed (or primed) ver-
sequel, whenever we refer to 46 L state, we mean aadmissible sions ofCPLand a state’s cutpoint-labels component.

LS L state.
It is possible to extract aliasing relationships from the sets of 4 2 1 Helper Functions
generalized access paths that describe the objects in a heap, and
in particular to observe the heap structure as follows: a current
variablex points-toan objecto iff the access pathiz, ) is in o.
Similarly, cutpoint-labetpl labelsobjecto iff (cpl, ¢) is ino. The
field f of an objecto; points-toobjecto- iff for every generalized
access pathjr,d) in o1, the generalized access pgihdf) is in
02. A generalized access patlpoints-to(resp.passes throughan
objecto, if a € o (resp.35 < a such that3 € o). An objecto is
reachablefrom a variabler, if there exists a field path € A such
that(z, §) € o.

Example. The heap of the running example at the state in which
reverse is invoked is shown in the first row in the second col-
umn of Fig. 6 (labeledA®). It shows eight sets of generalized ac-
cess paths. Each set represents one allocated list-elemedt’, At
x.n.n.nandz.n.n.npoint-to the same object. The set of cutpoint-
labels at the call site is empty. This is always the case for the main
function. The fourth element ir’s list is a cutpoint for the invo-
cation ofreverse : it is reachable from an actual parameter (its
representation includes.n.n.n) and by a field of an object that
is not passed to the invoked function (thefield of the third ob- . )
jectinz’s list). The heap at the beginning mverse  (shown in appliesf to every Slement ol and returns the resulting set. For-
Fig. 6, labeled byA®) differs from A€ in three ways: (i) there are  mally, map(f) M :ef{f(x) |z € M}.
only five objects in the heap; (ii) the set of cutpoint-labels contains

{{h-n.n.n}}, which labels the fourth element in the list; and (i)  4-2-2 Atomic Statements

To define the inference rules, we use the following functions:
[]., rem(,-) andadd(-, -), which are defined in Fig. 9. We useas

a metavariable ranging over sets of generalized access paths, which
are not necessarily objects, whereadways stands for objects.

The function[a] , returns the object that points-to in heapA.
When« does not point-to any objecfy] , returns the empty set
(which by definition never describes an object pointed-to by a cur-
rent, or even a pending, access path).

The functionremtakes as its arguments a hedpand a set of
generalized access pathslt removes from the description of ev-
ery object in heapA all the access paths that have a prefixin
Wheneveremremoves all the (generalized) access paths from the
description of an object, that object is removed from the description
of the heap. The functiondd (A, a, ) yields a modified version
of heapA, where to every objeat € A reachable fromy by fol-
lowing some field patld € A, the generalized access path$ are
added.

In addition, we make use ofap() , another well known func-
tional from functional programming. The functionadap(f) M



(x = null, (CPL, A)) % (CPL, rem(A, {z}))
(x=7y,(CPL A)) + (CPL add(A, {x},y))

(x =y.£,(CPL, A)) % (CPL add(A, {z},y.f)) (1)
(x.£ = null, (CPL A)) % (CPL rem(A, [z] ,.f)) (2)
(xf =y, (CPL A)) % (CPL, add(4, [z] .., 1)) (2)
(x = alloc t, (CPL, A)) <% (CPL AU {{z}})

Figure 10: Axioms for atomic statements in the local heap se-
mantics. Note that the set of cutpoint-labels is not changed.
The side-conditions are: (1) y € flat A and (2) = € flat A.
The side-conditionz € flat A (resp.y € flat A) means thatx’s
(resp.y) value is notnull.

y=p( x1,...,xx) at memory stater;, assuming that the execu-
tion of the body ofp at memory state; results in memory state

o7. The heapsA® and A" are described by sets of generalized
access paths starting at the caller’s variables and cutpoint-labels,
whereas the heap$® and A” are described by sets of generalized
access paths that start at the callee’s formal parameters, cutpoint-
labels, and return variable. The rule provides the means to reconcile
the different representations.

The rule uses the functiorall} ™ (L. andRety ST
which are parameterized for each call statement in the program
Cally=P"1"x) computes the memory statg, that results at
the entry ofp wheny = p(z1,...,zs) is invoked byg in mem-
ory statesf. The caller's memory state after the invocation is re-
stored by the functiomRet?="("*=*"*)  This function computes
the memory state of the caller at the return-sitg )(according
to ¢’s memory state at the call-site{) andp’s memory state at
the exit-site §7). In the rest of this section we describe the rule
for an arbitrary call statement = p(z1,... ,2%) by an arbitrary
functiong. The rule utilizes additional helper functions, defined in

Theaxiomsfor atomic statements are given in Fig. 10. We sim-  Fig. 12, which we gradually explain.
plify the semantics by making the same assumptions as in Sec. 2.3.  The main idea behind the rule is to utilize the fact that a function
Assigningnull  to a variablex does not modify the link struc-  cannot modify objects that are not in its local-heap (i.e., in the part
ture of the heap. We only need to eliminate all the access paths thatof the heap that isiot reachable from any actual parameter when

start withx, using theremfunction.

The semantics for the assignment y copies the value of the
variabley into x by adding an access pafl, §) to any objecto
that can be reached frognby following a field pathy, i.e., (y, 9)
points-too. This is accomplished by applyingdd to the given
heap, the singleton s¢t:}, and the access paih

The rule for field dereference = y.f is similar. It adds the
access patkiz, ) to any object that can be reached frgrby fol-
lowing field f , and then continuing with field path Note, how-
ever, that the rule can be applied onlyipoints-to an object, i.e.,
the semantics checks that a null-dereference is not performed.

A destructive update.f = null (potentially) modifies the
link structure of the heap. Thus, evaggneralizedaccess path that
has a prefix aliased witte, f) is removed from the description of
every object in the heap. Note, that , returns all the access paths
that are aliased witle. Concatenatindz] , with f returns the set

the function is invoked). In particular, becausé £ describes ob-
jects in terms of the (generalized) access paths that point-to them,
these “inaccessible” objects have the same description before and
after the call. Thus, only the description of the objects in the func-
tion’s local-heap (i.e., in the part of the heap that the function can
access) is (possibly) updated. The update is carried out using the
cutpoints of the invocatioh In essence, the semantics freezes the
initial descriptions of the cutpoints and arranges for them to persist
throughout the execution of the called function. This sets up a re-
lation between values on entry to values on exit. At the return, the
frozen information is used to update the description of objects in
the called function’s local-heap via an operation that is (roughly)
similar to a relational join [3]. (The operation is not a “pure” rela-
tional join because of some name adjustments that are needed due
to the different representation of objects by the caller and by the
callee.)

of prefixes of affected access paths. Again, the rule can be applied To find which objects are in the local-heap of the called func-

only if x points-to an object.

An assignmenk.f = y also has a (potential) effect on all the
access paths that are aliased with After this assignment, any
objecto that can be reached by following the field patfrom vy,

tion, i.e., reachable from the actual parameters (.. , zx), we
first compute the set of objects that greinted-toby p's actual
parameters@:™°). Then, the auxiliary functiolRObjsfinds the
part of the caller's heap4©) that is reachable from these objects

€., (y,0) € o, is also reachable by traversing some (generalized) (Qzessed),

access path aliased with followed by anf -field, and continuing
with §. As this is a place where cycles can be creatett] does

The description of the objects after the call should account for
the mutations (destructive updates) of the heap performed by the

not necessarily return a right-regular heap. Therefore we apply the callee. However, because the invoked function cannot modify ob-
operatof. A is defined to be the set of equivalence classes obtainedjects that it cannot access, it can only modify fields of objects in

from the least right-regular, prefix-closed, equivalence relation that grassed,

is a superset of the equivalence relation inducediby Note that

Thus, to compute the (possibly) updated description of
objects |nO£‘””d (as well as of objects that the callee allocates) it

this definition may only add access paths to the description of ex- is sufficient to have a description of every object@d**** (and

isting objects.

The (deterministic) semantics of memory allocatxorr alloc
t adds a new object that is described{ly} to the heap. Note that
this definition (implicitly) initializes the fields of the new object to
null.

4.2.3 Function Calls

The inference rulefor function calls is defined in Fig. 11. The
rule defines the program stat§, that results from an invocation

3The operatof is similar to thep,..;. operator in [6].

of every object allocated by the callee) comprised of the (general-
ized) access paths that start at objects that sep@té&*® from

the rest of the caller’'s heap: When the function returns, we just re-
place any (generalized) access paihs d,) in the description of
every object in the heap of the calle¢™) that start at a “separating
object”o’, by access paths of the callet,, 6,6, ) such thatr,, J,)
points-too’, but does not pass throughf®*** (and thus cannot be
modified). Technically, this is done as described below.

4The same mechanism is used to compute the description of objects
that the callee allocates.
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Figure 11: The inference rule for function calls in LS£. The

rule is given for an arbitrary call statement y = p(z1,... ,zx)

by an arbitrary function g. We assume that the formal param-
eters ofp are hq, ... , hg.

The auxiliary functionCPObjs, (cf. Fig. 12) determines the
cutpoints for this function invocatior(¢”). Cutpoints are the ob-
jects that “separate®?****¢ from the rest of the caller’s heap. For

RObjs Heap; — (2°%r — 29%1) st.

RObiSA) 0 % o c A |0 0,5 A, 0.6 C o)

Bypass: 2°%L — (Obj, — 20A%Pa g t,
Bypass(0) o def{(r, 5) €0 |V <6.(r,8') & flat O}

sub: (2 GAccPath N 2GAcnPath) _ (Ob]L N 2GAm:Path)

}

sub(bind) o d:efﬂat {b’md(a),é a € dom(bind),

d€EN a.dCo

CPObjs,: £9 — (2071 x 2091 — 20%1) s,

C’PO[z]’sq((CPLC7 AY) (O&m°, ijassed) d:ef
Let
Oy = OF*\ O
Ovars = {[{z,€)]4c € O(igﬁp/ \ JL'AG ngp .
o € A°\ Orassed
Opa = 10€Q0uer | 54 ¢ Fieldl\d, Jd.fCo
Ot = {[(cpl,€)] 4 € Odeep | cpl € CPL}
in

Ova'r's U Ocpl U Oﬂd

Figure 12: Helper functions for the function-call rule. The
function CPObjs,, is parameterized for every functiong in the
program. Recall that V, is the set ofg’s local variables.

parameters to the set of “trivial” access paths that are made up of
the corresponding formal parameters. The functiond., maps
every cutpoint (in the caller representation) to the set of access
paths that start with a formal parameter of the caller and point-to
that cutpoint at the entry to the function, i.éind., maps a cut-
point to its label (see Sec. 3). To compute the label of a cutpoint
o, we applysub(binda.q). The latter denotes a function that re-
places every access path that starts with an actual para(metéy
in the representation af by an access patth;, §) that starts with
the corresponding formal parameteruf is defined in Fig. 12.)
The bind ..; combines the previous two mappings trivially as they
have disjoint domains.

Having defined these mapping functions, computing the mem-
ory state ofp in which its body will be evaluated (i.e., the descrip-

expository reasons, we do not want to consider objects that arejon of the heap at the function entry) is straightforward. The set
pointed-to by actual parameters as cutpoints. Thus, the function cutpoint-labels (PL¢) is computed by applyingind., to ev-

CPObjs,,, which is passed the caller's memory state as well as the
previously computed?™* andO2****?, considers only objects in
Odeep = O\ 029 as possible cutpoints. Following the in-
tuition of cutpoints as “separating objects”, an obje@ O 4., iS
qualified as a cutpoint if (and only if) one of the following holds:

e o is pointed-to by a local variable of the call&p.(,,s), or

e o is pointed-to by an object in the part of the caller's heap
that is not passed to the functiof®£a), or

e o separates the heap of toaller from the heap of one of
the pending calls, i.eq is a cutpoint of the invocation of the
caller Ocpi).

Back in Fig. 11 we define several binding mappings to bridge the

ery cutpoint. The heap component9) is constructed by applying

bind .,u tO every object inDressed - Note that in the resulting de-
scription, objects are described by the set of (generalized) access
paths that point-to them and start either at a formal parameter or at
a cutpoint object.

To handle the return of functiom we use an additional binding,
bind,e.:. This mapping is the inverse dfind..; (hence getting
back to the caller's representation of the object) composed with
the functionBypass(02*****), which filters out generalized access
paths (of the caller) thagtass throughthe part of the heap that
had access tag?****?). In addition, it also takes care of replacing
access paths starting with special varialelewith the same access
paths starting with result variable Note that applyingind..; is
well defined becaus€PL® andCPL® are equal (the callee cannot
modify the set of objects that separate its own local-heap from the

gap between the two different representations of objects (in terms|ocal-heap of of some pending c3ll

of access paths of the caller and in terms of access paths of the

callee). The functiorbind .., maps objects pointed-to by actual

®Note that in any transitiodor, st) % o1, the cutpoint-labels



The cutpoint-labels component of the state after the return of THEOREM4.4 (EQUIVALENCE). Letpbe afunction. Let €
p is the same as before the invocatiafi{L) because the callee X% andog € X%, be observationally equivalent states. Lsetbe
(p) cannot modify the set of objects that separate the heap of its an arbitrary statement ip. The following holds:
caller (g) from the heap of some other (earlier) pending-call. The Lo, ¢ ,
new heap is calledi”. It is derived by removing from the heap (st,oL) ~5 01, <= (st,oq) ~> oG-
at the call-site the passed objece?{***%), plugging in the heap
that results from evaluatingjs body (A”), and substituting the de-
scription of all the objects by applying:b(bind ;) to every object
in A®.

Example. Applying the function-call rule for the invocation of

Furthermoreo7, andoy, are observationally equivalent.

The following theorem states thatS L can be used to: (i) verify
data-structure invariants that are expressed by access-path equali-
- ) ! ' ties at a program point; and (ii) assert the absenceutifvalued
reverse inour running example results in the following sets and pointer dereferences. Formally, a property is an invariant at a (la-
mappings: beled) statement if is satisfied in any memory-state that occurs just

0 = {{z}} before the (labeled) statement is executed.

oressed = L} {z.n}, {z.nn}, {znnn, znnn},
{z.n.n.n.n,znnnn}}
OF ={zn.nn,znnn}

COROLLARY 4.5. Let P be a programp a function ,Ib a pro-
gram point inp. For anya, 8 € AccPath,, [a = (] is an

bindargs = {x} — {h} invariant of P atlb iff [a = 8]« is an invariant of P at Ib.
binde, = {z.n.n.n, z.n.n.n} — {{hn.nn}} The following theorem states thatS £ can detect memory leaks
bindrer = {{h.n.n.n}} — {z.nnn}, {ret} — {y} without investigating reachability fromootsof pending access paths.

A memory leak can occur only when a variable or a field is assigned
) ) — null . The “leaked objects” are the ones that are not pointed-to
vocation ofreverse (see Sec. 4.1) and its label {&.n.n.n}. only by suffixes of the nullified variable (or field).

Thus, when the execution oéverse 's body starts, the cutpoint

is represent@_ﬂ/ the following set of (generalized) access paths: CoroLLARY 4.6. A memory leak can occur only when a vari-
{h.n.n.n,{h.n.n.n}}. When the execution of the function body able or a field is assignedull . Furthermore,

ends, the cutpoint-anchored paths in the representation of every
object in A” (see Fig. 6) are replaced by access paths that start
with z.n.n.n, the only access path that points-to the cutpoint at the
call-site andbypasseshe objects that were passedraverse

In particular, the fourth element ix’s list is a cutpoint for the in-

e Executing astatemert = null inamemory statéCPL, A)
leaks an object iff 0 C z.A.

il e Executing astatemertf = null  inamemory statéCPL, A)
For example, the cutpoint-anchored pdfhn.n.n}.n in the rep- leaks an object iff o C [(z,€)] ,.f.A.
resentation of the third element in the returned list is replaced by
4.3 Properties of the Semantics Both Cor. 4.5 and Cor. 4.6 are corollaries of The. 4.4. In [17]

The only means by which a program can observe a state is by ac-We define a language of assertions over access paths and show that
cess paths. In particular, the program cannot refer to the cutpoint- £S£ preserves partial and total correctness of assertions expressed
labels component of the state. To state the theorems, we needn this language.
some preliminary definitions about access-path equality and ob-
servational equivalence. We use the same simplifying notational 5. SHAPE ANALYSIS
conventions as in Sec. 4.2. Note that in both semantics an access |, this section, we use th&S£ semantics to automatically com-

pathis equal tewll - when it has a prefix which is equal twill pute a safe approximation to the set of possible program states us-

DEFINITION 4.2 (ACCESS PATH EQUALITY). Access paths ing an iterative abstract-interpretation algorithm. The main idea
and 3 are equalin a given stater;, denoted byjar = 8] (o1.), if is that every abstract state finitely represents a potentially infinite
Vac A aca 3 € a. An a(l:cess path is equal to nuIIlin number of concrete£SL states. The program is interpreted ac-

! . Lt .
states,, denoted bfjo = null] (o), if a & flat A. cording to an abstract semantidé:) that over-approximates the
DEFINITION 4.3 (OBSERVATIONAL EQUIVALENCE). Letp be concrete transition relatiorﬁ(). Termination of the the abstract-
afunction. The states;, € S% andog € X, are observationally |nl§etrpretta'i|0tn algorithm is guaranteed by the finiteness of the set of
equivalentif for all «, 3,y € AccPath,, apstract states. e )
. The algorithm ionservativeit describes any memory state that
() [a=Blelor) < [ = Bla(oc), and can arise (at any program point) in any execution. This means that

we can conservatively determine properties of the program such
as the absence of null-dereferences, absence of garbage, and va-
lidity of invariants by checking these properties on the (generated)
. . abstract states. However, because the descriptioaniservative
4.3.1 Semantic Equivalence the algorithm might represent concrete states that are infeasible ac-
The following theorem is the main theorem in the paper. It cording to the concrete semantics. This leads to incompleteness in
states that’SL is equivalent toGSB, in the sense that both be-  the sense that we may fail to establish assertions that hold for every
have equivalently w.r.t. termination, and that execution of state- execution.

ments preserves observational equivalence. A proof of the theorem
is given in [17].

(i) [y =null]r(or) & [y =null]g(oc).

5By a memory leak we mean an object that is not pointed-to by any
access path; I.e., neither by an access path of the current call nor by
component iy, ando?, is the same. one of a pending call.




We present a new interprocedural shape-analysis algorithm for| t02VLS ¥; — 2-Structs.t.
programs that manipulate singly-linked lists. The algorithm finds | to2vL(CPL, A)) = S where U = AU CPL and

a finite description of all the memory states that arise during pro- isList’(v) = wveA
gram execution. Useful information regarding the program’s be- isLabel®(v) = wve CPL
havior can be extracted from the computed descriptors. For exam- 25 (v) — veAandr €v

ple, an analysis of the running example successfully verifies that nS(vi,v2) = w1 € Az € Aandor.n C v
the program does not reference null; does not create garbage; and S (v1) — Jacu st (e <a
that wherreverse returns, the variables andy point-to acyclic et B e A=

linked lists with a shared tail. ils® (v) = Jdanew, fnev st o, #[8l,
The algorithm is presented in terms of thealued-logic frame- ¢ g“) = Ja€v, fevsta<P
work for program analysis of [19]. Technicallg;valued logical eq S(“h“?) = =02
structures are used to represent unbounded memory states. The lblS(UhW) = v €CPL vy € Aand(vs,€) € vs
tracked properties are encoded as predicates. ep” (v) = 3JreCPLst (re€v
In this paper, we focus on the abstraction’é £ memory states. rep(v) = IreCPLIcA st (rd)ecv

Due to lack of space, we do not give the full details of the analyses.
In particular, the abstract transfer functions are not defined. Instead,Figure 13: The function to2VLS maps states in>;, to 2-valued
we specify the analysis using thest abstract transformd#]. We logical structures.

plan to report on the shape-analysis algorithm in more details once
its implementation is complete.

. Predicate [ Intended Meaning
5.1 Representingsc Memory States bys-Valued =755, 2Tt slement?

Logical Structures isLabel(v) | Isv a cutpoint-label?
Kleene's3-valued logic is an extension of ordinayvalued logic z(v) Is v pointed-to by a (current) variable?
with the special value of (unknown) for cases in which predicates n(v1,v2) | Does then-field of v; point-tov,?
could have either valug, (true) or0 (false). We say tha and 1

a4 ‘ : >C ) rz(v) Is vo reachable from (current) varialkeusing
aredefinitevalues, whereas is anindefinitevalue. The informa- n-fields?
tion partial order on the s€0, 5,1} is defined a9 C 5 J 1, and ils(v) Is v locally shared? i.e., is pointed-to by more
OUl=3. than onen-fields of objects in théocal-heaf?
A 3-valued logical structures' is comprised of a set of individu- c(v) Doesu reside on a directed cycle offields?

als (nodes) called a universe, denoted by, and an interpretation
over that universe for a (finite) set of predicate symbols. The inter-
pretation of a predicate symbplin S is denoted by®. For every

eq(vi,v2) [ Arew; andv, the same object or cutpoint-labe]?
Ibl(v1,v2) | Islist element, labeled by cutpoint-label; ?

predicatep of arity &, p® is a functionp®: (U®)* — {0, 5,1}. cp(v) Is list element a cutpoint? _

A 2-valued structure is 8-valued structure with an interpretation | "e»(?) Is the list element reachable from a cutpoint
limited to {0, 1}. The set of2-valuedlogical structure is denoted usingn-fields?

by 2-Struct and the set o8-valuedlogical structures is denoted by

3-Struct Table 1: The predicates used to represent states iB;. There

To establish the Galois connection between the set of program are separate predicates: and r, for every program variable x.
states (ordered by set inclusion) aB¢btruct it suffices to show
a representation functiothat maps a program state to its “most-
precise representation” iB-Struct(e.g., see [14]). We define the
function Bshape: X7, — 3-Struct which maps a local-heap to its
most precise representation a¥-aalued logical structuredshapeis
a composition of two functions: (fp2VLS X; — 2-Struct which
maps a local-heap;, to an unbounde@-valuedlogical structure ity
S, and (ii) canonical abstraction 2-Struct— 3-Structwhich con- {h.n.n.n}.
servatively bound$' (defined as usual in [19]).

at the entry point ofeverse (shown in Fig. 6). The resulting

2-valued logical structure, denoted By, is depicted in Fig. 14.
The universe ofS. contains six nodes. The nodes—us rep-

resent the list elements. The nodgrepresents the cutpoint-label

e The predicatessList andisLabel record whether a node repre-

51.1 Representing a LocaI-Heap by-a/alued Log- sents a list element or a cutpoint. We draw nodekat repre-
ical Structure sent list elements, i.eisList® (u) = 1, as rectangles, e.g., nodes

uo—us; and we draw nodes that represent cutpoint-labels, i.e.,

The functionto2VLS defined in Fig. 13, maps a local heap = isLabel® (v) = 1, as circles, e.g., node;

(CPL, A) to a2-valuedlogical structureS. Every objecto € A
and every cutpoint-labaipl € CPL is represented by a unique e The predicateh, n, 7, ils, ¢, andeq are an adaptation to local-
node inU®. Tracked properties of the memory state are recorded heaps of the standard predicates used in the analysis of singly
by the predicates given in Tab. 1. We denote the set of predicates linked lists [13, 19].

used to represent a memory statefy

2-valuedlogical structures are depicted as directed graphs. A - Foreach pointer variable, there is a unary predicate The
directed edge between nodesandu; that is labeled with binary value ofh” (u) is 1 if variableh points-to the list element rep-
predicate symbaj indicates thap® (u1, u») = 1. Also, for a unary resented by,. The \_/alue of théi-predicate is depicted via an
predicate symbap, we drawp inside a node: whenp® (u) = 1; edge from the predicate narmdo the node that represents the

conversely, whep® (1) = 0 we do not drawp in . list element thah points-to.
We explain the predicates’ intended meanings through an exam- - The pointed-to-by-a-field relation between list elements is rep-
ple. In the example, we applp2VLSto o7, the memory state resented by the binary predicatei.e.,n” (v1,v2) = 1 if the



n-field of the list element represented by points-to the list
element represented by.

The unary predicate;, holds for list elements that are reach-
able by an access path that starts at a local varialdéthe
currentcall.

The unary predicatéls capturedocal-heapsharing informa-
tion. The predicate has the valuet a nodeu that represents

a list element that is pointed-to by thefields of two or more
list elements in théocal heap Note that the predicate records
only local sharing. In particularils® (u2) = 0, although in a
“global-view” of the heap, the list element representeduby

is the n-successor of two list elements: one in the the local
heap (represented hy;) and one not in the local heap (the
third element in the list pointed-to tm).

The unary predicateholds at a node that resides on a cycle of
n-fields.

The binary predicateq records the equality relation. It is not
drawn in the pictures.

e The predicate®!, cp, andr,, record information that is special
for the abstraction of adSL state.

- The binary predicaté! relates a node that represents a cutpoint-
label to the node that represents the corresponding cutpoint.
For example/bl® (ue, u2) = 1, becauseus represents the la-
bel of the cutpoint represented by.

The unary predicatep records the property that a list element
is a cutpoint, e.g.¢p”< (uz) = 1 becauseu; represents the
(only) cutpoint inS.; for all other nodes:, cp®¢ (1) = 0.

The unary predicate., records the property that a list ele-
ment is reachable by a cutpoint-anchored path. For example,
ro¢ (uz) = 1 andrag¢ (uz) = 1 because (only). andus rep-
resent list elements that can be reached from the cutpoint (by
the cutpoint-anchored patksh.n.n.n}, €) and({h.n.n.n}, n),

respectively). For all other nodasrf;(u) =0.

The predicatesp andr,, are used to record information regard-
ing cutpoint-anchored paths in a similar manner to the ivagdr),
record information regarding access-paths. However, unlike local

variables, the number of cutpoints is unbounded. Thus, we cannot

(st.5) 4" {Borapd0) | o1 € 2(S), (st on) & o1}

Figure 16: A specification of the abstract inference rules for
atomic statements.

We say that a node‘ € US’ representsnodeu € U, when
fu) = ub.

Example. The3-valuediogical structureS?, depicted in Fig. 15
(first row, second column), (conservatively) represents the memory
states}, represented by..

3-valuedlogical structures are also drawn as directed graphs.
Definite values are drawn as for 2-valued structures. Binary in-
definite predicate value%][ are drawn as dotted directed edges.
Summary nodes are depicted by a double frame.

The universe ofS. contains 6 nodes. The only nodes that have
the same values for all the unary predicatestateandwq,. Thus,
the universe ofS? contains five nodes. The mappirfg U°c —

US¢ induced by the canonical abstractiorfig) = uf, f(u1a)
flue) = uf, f(uz) = uf, f(us) = uf, and f(us) = uf. The
only summary node ia‘{.

We see that any memory state represented’bgontains one
cutpoint label (the nodeg is not a summary node). The cutpoint
is represented byg. This is recorded in two ways: (i) the value
of the predicatdblS¢ (uf, ul) = 1 and (i) u!, represents a list ele-
ment that is labeled, as indicated by the value of the unary predicate

Sty —
ep”e(us) = 1.

5.2 Abstract Interpretation

The specification of the abstract interpretation is given by “ab-
stract” inference rules in the same style as the natural semantics.
The abstract inference rules operate3avaluedlogical structures.
Fig. 16 and Fig. 17 shows the specification of the abstract inference
rules for atomic statements and function-calls respectively. These
rules are declarative in the style of the best abstract transformer [4]:
every abstract inference rule emulates a corresponding concrete in-
ference rule using represented states .

Example. Fig. 15 shows an application of the function-call infer-

have a predicate recording the reachable list-elements from everyence rule from Fig. 17 to the running example. The logical struc-

cutpoint. Instead, we use individuals to represent cutpoint-labels,
and “mark” cutpoint objects with thep predicate.

5.1.2 Canonical Abstraction
The main idea in canonical abstraction is to represent several

tures are:Sﬁ, which arises alb., the call-site toreverse ; Sﬁ,
which arisedb,, the entry toreverse ; S% which arises atb,,
the exit-point ofreverse ; andSB. , the structureomputedat the
return-site.

In S¥, the list pointed-to byet is reversed. As a resulztz,ﬁ is

list elements (or cutpoint-labels) by a single node, i.e., the map- now reachable from the cutpoint at the exit-site. Therefore, even
ping from list elements and cutpoint-labels to the universe of the though the list-element pointed-tobys not explicitly represented
3-valuedlogical structure is a surjective function, but not neces- in Sg, the inference rule allows us to conclude thafhtthe return-
sarily an injective function. A node that represents more than one site's logical structurey’, becomes reachable fram Similarly, .}

list element (or more than one cutpoint-labels), is calledrmmary
node.

Formally, a3-valuedlogical structures* is acanonical abstrac-
tion of a 2-valuedlogical structuresS if there exists a surjective
functionf: US — US* satisfying the following conditions: (i) For
allu, uz € US, f(u1) = f(uz) iff for all unary predicatep € P,
p®(u1) = p(uz), and (i) For all predicatep € P of arity k and

#t
for all k-tuplesu?, u5, ... ,uf € U,
S S
PP, ul) = ] p(uu ).
U, up €EUS
Flug)=ul

is no longer reachable from To conclude, definite values of many
of the tracked properties af can be established after the function
call returns.

5.3 Discussion

In our abstraction, when a program state is mappe®tea@ued
logical structure, no information is tracked regarding the contents
of their labels. Furthermore, we do not differentiate between differ-
ent cutpoints. This may lead to a significant loss of precision when
multiple cutpoints arise. For example, passing two lists with shared
tails will be handled very conservatively.

Nevertheless, even with this simple abstraction, our abstract do-
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Figure 14: The 2-valued logical structure that results by applyingto2VLSto o7, the memory state at the entry point ofreverse
(0% is shown in Fig. 6). We denote this structure bys..
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Figure 15: Representative3-valuedlogical structures that arise during the analysis of the running example atb., the call-site to
reverse (first row, first column); Ib., the entry to reverse (first row, second column);lb., reverse ’s exit point (second row,
second column); andb.., the return-site from reverse (second row, first column).

main is precise enough to analyze the singly-linked-list-manipulatinghandle function calls, dynamic memory allocation and destructive
programs analyzed in [9, 18] and verify that they do not derefer- updates. The algorithm rotshown to be an abstract interpretation
ence null-valued pointers, do not create garbage, and do not creat®f [6]. One can define a Galois connection between memory states
cyclic lists. Moreover, we can handle programs not handled before in LS £ with the abstract domain of [7]; see Sec. 6.3 and [17].

by [9, 18]. For example, we can verify that a recursive function that

destructively merges two acyclic lists, returns an acyclic list. 6.2 Interprocedural Shape Analysis

It is straightforward to allow multiple cutpoints for functions o R
with multiple formal arguments by discriminating cutpoints reach- 1 he original motivation for our work comes from our attempt to
able from different formal parameters. This will improve the preci- @PPly interprocedural shape analysis (e.g., [19]) to heap-manipulating
sion of handling functions that are passed multiple lists. programs in a modular fashion. In [16,_Chap._6] this objective was
achieved, but based on a weaker technique: (i) a procedure operates
on the part of the heap that is reachable from the actual parameters,

6. RELATED WORK where the heap is considered asuadlirectedgraph; and (ii) pend-
. ing access paths that point-to objects in the passed part of the heap
6.1 Storeless Semantics are represented. In this paper, the heap is treated as a directed graph

Storeless semantics was first introduced by Jonkers [10]. The and pending access paths are not represented. In addition, [16] does
original work does not handle procedure calls. Intraprocedural not handle recursive procedures.
storeless semantics is also used in [1] to develop a logic that al- A modular interprocedural shape-analysis algorithm is presented
lows to express regular properties of unbounded data structures. in [2]. A procedure is analyzed only in the part of the heap that is

A storeless semantics that handles function-calls is defined in [6]. reachable from its parameters. The algorithm is able to relate the
The semantics is used to develop a may-alias algorithm. In contrastmemory states at the procedure-entry with the memory states at
to LS L, in [6] pending access paths are explicitly represented. the procedure-exit by labelingveryabstract node. However, the

The interprocedural may-alias algorithm of [7] uses a storeless mapping is determined by the sharing within the part of the heap
representation of the heap. The algorithm is polynomial and can that is passed to the procedure, and not by the sharing pattern with
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where

{Calig (o) | o € 7(XS,)} C (XS)
0% € 1(XS)).
Retj(0%,0%) | of €q(XS}), b C AXS)

compatible(cf, o)

Figure 17: A specification of the abstract inference rules
for function calls. The functions Cally=""*"*¥) and

Rety=P("1"%) gre defined in Fig. 11. Note that we apply
Rety=P(®1-%1) only for compatiblepairs of memory states.
Memory statesc{ and of are compatible when the sharing pat-
tern that results from the invocation of p at o7 matches the de-
scription of the context in o7, the state ofp at the exit-site. For-
mally, compatible(c},0f) <= (CPL® = CPL* A Vh,h' €

F,.[h = R']r(co}) = [h KlL(ef) N Vh €

F,.[h = null]z(cf) <= [h = null]r(of)), where
0§ = Cally=r"H1detm) (g6 ).

the context—which is what is needed.

tion on R-values of pending access paths can be delayed to the pro-
cedure return—even though the memory cells do not have unique
identifiers, e.g., locations. The main idea is to track the effect of
destructive updates on access paths that start with the set of objects
that separate the part of the heap the procedure can reach from the
rest of the heap (objects that we call thepointsof the invocation).

A similar observation regarding the uniform effect of a procedure
on pending access paths was made by [5, 12] for pointer analysis.
We believe we are the first ones to use it in semantics.

LS L was designed with its precise and efficient abstractions in
mind: information about the context provided by the rest of the
heap is isolated to the sharing patterns of the cutpoints—which are
expressible in a context-independent manner. An analysis benefits
from the fact that the heap is localized: the behavior of a procedure
only depends on the part of the heap that is reachable from actual
parameters, and on the sharing patterns that create cutpoints. Fur-
thermore, analysis results can be reused for different contexts that
have similar sharing patterns.

Using an abstraction of the non-standard concrete semantics, we
present a new interprocedural shape-analysis algorithm for pro-
grams that manipulate dynamically allocated storage. Our approach
is markedly different from previous works that analyze a function
invocation in the calling context [9, 18]. The new algorithm can
prove properties of programs that were not automatically verified
before, (e.g., to establish that a recursive, destructive merge of two
acyclic singly-linked lists returns an acyclic singly-linked list—
see Fig. 18). In particular, it provides a way to establish proper-

Interprocedural shape analysis has also been studied in [9, 18].ties with fewer program-specific instrumentation predicates. We

In [18], the main idea is to make the runtime stack an explicit data

believe that the modular treatment of the heap will allow the im-

structure and abstract it as a linked list. In this method, the entire plementation of these abstractions to scale better on larger pieces
heap and run-time stack are represented at every program point. Af code. The approach also provides insights into an existing may-
a result, the abstraction may lose information about properties of analysis algorithm [7].
the heapfor parts of the heap that cannot be affected by the proce-  Two design choices were made during the development of the
dure at all In [9], procedures are considered as transformers from new shape-analysis algorithm: One is to use a “storeless” seman-
the (entire) program heap before the call, to the (entire) program tics. The other is to concentrate on a superset of a program’s foot-
heap after the call. Every heap-allocated object is represented atprint, based on reachability, rather than the actual footprint. While
every program point; on the other hand, only the values of the lo- the ideas underlying our approach apply also to shasedseman-
cal variables of the current procedure are represented, which meansics, the choice of a storeless semantics was a natural one to make
that the irrelevant parts of the heap are summarized to a single sum{see Sec. 1.2). We specified the semantics using an equivalence
mary node during the analysis of an invoked procedure. However, relation of pointer access-paths (and not, for example, by logical
a rather expensiveneetoperator is used to compute the abstract structures as done in [19]) because the naming scheme we use for
value after a call. cutpoints (cutpoint-labels) fits naturally with the explicit manipu-
. . lation of access paths done in this type of semantics. The decision

6.3 MaY'A“aS Ana|ySIS to concentrate on a superset of a program’s footprint (inferable via

May-alias algorithms find an upper approximation for the sets of static analysis), was a pragmatic choice for the present study. In fu-
aliased access paths at every program pdtZ provides insight ture work, we plan to investigate the use of user-supplied assertions
into Deutsch’s work on static may-alias analyses based on pointer-about preserved portions of the heap.
access paths [7]—in particular, the treatment of variables of pend- The notion of acutpointseems to be an important concept both
ing calls, which is one of the most complicated aspects of [7]. For in storeless semantics and in store-based semantics. For instance,
instance, a surprising aspect of the method given in [7] is that recur- garbage collection of local heaps becomes unsound unless cutpoints
sive procedures are handled in a more precise way than loops. Theare considered as part of the root set. Our storeless semantics takes
intuitive reason is that the abstractions of values of variables in the sets of access paths astpoint-labels This provides a context-
current procedure is different from the abstraction used for values independent representation for the cutpoints of the invocation.
of variables in pending procedures. Furthermore, in [17], we show  In some sense, the approach used in this paper is in the spirit of
that Deutsch’s algorithm can be seen as an abstraction @&t local reasoning [8,15], which provides a way to prove properties of
semantics. a procedure independent of its calling contexts. In local reasoning,
the “frame rule” allows proofs to be carried out in a local fashion:
the main idea is to partition the heap into disjoint parts and reason
about the parts separately. Our semantics resembles the frame rule
in the sense that the effect of a procedure call on a large heap can
be obtained from its effect on a subheap.

7. CONCLUSIONS

In this paper, we develogSL, a storeless semantics for lan-
guages with dynamic memory allocation, destructive updating and
procedure calls. Our storeless semantics is unique in that called
procedures are only passpdrtsof the heap. Acknowledgments. We are grateful for the helpful comments of

Our main insight is that the side-effects of a procedure invoca- E. Yahav, G. Yorsh, and the anonymous referees.
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