
Allocation-Site Aware Shape Analysis and Applications in Hard Real-Time
Systems

Jörg Herter
Saarland University, Saarbrücken, Germany

jherter@cs.uni-saarland.de

Abstract

Shape analysis aims at determining invariants of heap-
allocated structures that arise during the execution of a
program. Current shape analysis techniques are state-
less, i.e. they only model the structures arising on the heap
and completely ignore their memory locations and where
they were allocated. This paper proposes an extended,
allocation-site aware shape analysis and briefly sketches
fields of applications for such an analysis in the area of
(hard) real-time systems.

1 Introduction

Shape analysis denotes a static program analysis that
determines the shape of—or invariants that hold for—the
heap at the different program points. Most recent ap-
proaches to shape analysis rely either on separation logic
[8] to express inferred properties of structures arising on
the heap [2], or they model the heap by 3-valued logical
structures [9]. The commonality of all approaches is that
they are stateless. I.e. they only model what heap struc-
tures may arise, not where, i.e. at what memory address,
they reside on the heap nor where and when, i.e. at what
allocation site and which invocation thereof, they were al-
located.

For the current field of applications for shape analy-
ses like checking data structure invariants [9, 2] and mem-
ory safety or even verifying partial program correctness
[7], information about where and when heap objects were
allocated is not required and it may hence be safely ab-
stracted from in order to increase performance. How-
ever, in a real-time setting, applications for allocation-site
aware shape analyses arise. Consider for example dy-
namic memory allocation in hard real-time applications.
To enable tight bounds on the worst-case execution-times
(WCET) of such programs, a WCET analysis must be able
to correctly classify most accesses to heap objects as cache
hits or cache misses. The cache mapping of objects de-
pends on their addresses in memory, i.e. where they reside
on the heap.

More concretely, we are currently aware of three ap-
proaches to enable the determination of tight WCET

bounds for programs using dynamic memory allocation.
Schoeberl proposes to use predictable hardware caches to
separate dynamically and statically allocated objects [10].
To support this approach, a static analysis would have to
associate (heap) objects with allocation sites (or just al-
location technique: static or dynamic) to decide in which
hardware cache an object may reside. Herter et al. pro-
pose to use a predictable memory allocator that takes as
an additional argument the cache set to which the returned
address shall be mapped [5]. As a result, the cache set
mapping becomes explicit and statically known. However,
for a WCET analysis to benefit from this, heap objects
need to be associated with invocations of the dynamic al-
locator, i.e. where and when they were allocated. The third
approach is only applicable to a subset of hard real-time
applications with statically derivable regularities in allo-
cation behavior and aims at removing dynamic allocation
completely by replacing it by precomputed memory ad-
dresses [4, 3]. This approach heavily relies on a precise
static analysis of the program to enable the computation
of good memory addresses. It also requires that heap ob-
jects can be associated with allocation sites. While a data
structure analysis [6] can be used to connect heap struc-
tures with allocation sites, an allocation-site aware shape
analysis as proposed in this paper can yield more precise
information resulting in a more efficient set of precom-
puted memory addresses.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the framework for stateless
shape analysis via 3-valued logic as proposed in [9]. In
Section 3, we sketch how allocation-site awareness can
be incorporated into this framework. Section 4 discusses
static program analyses that would be enabled by or at
least profit from an allocation-site aware shape analysis.

2 Shape Analysis using 3-valued Logic

This section briefly summarizes the framework for
shape analysis via three-valued logic. For a detailed dis-
cussion, we refer to [9].

Two-valued logical structures can be used to describe
concrete heap states. Each heap allocated object is rep-
resented by a logical individual, each pointer variable by
a unary predicate that evaluates to true iff its argument

is the individual representing the heap object to which
the variable points. Field pointers referencing one heap
object from another are analogously modeled by binary
predicates. Additional so-called instrumentation predi-
cates can be defined to increase precision or performance
of the analysis. Properties of the heap can be formulated
as logical formulæ and checked by evaluating their defin-
ing formulæ on the logical structure describing the cur-
rent heap state. Effects of program statements on the heap
state are captured by predicate-update formulæ that state
how predicates are updated to yield a structure describ-
ing the heap state after execution of a program statement.
Figure 1(a) shows a graphical representation of a logical
structure describing three objects organized in a singly
linked list. Logical individuals are depicted as circles,
predicates evaluating to true as arrows. Predicates eval-
uating to false are not drawn.

x 1 2next 3next

1

2

next

3next

x

(a) (b)

Figure 1. Two shape graphs each depicting
3 objects organized in a singly linked list.

Applying the effects of the program statement
x = x→next ; modeled by predicate-update formulæ

x(v) ← ∃u.x(u) ∧ next(u, v)

next(u, v) ← next(u, v)

yields a structure as depicted in Figure 1(b).
A shape analysis of a given program/method can then

be implemented as a fixed point computation collecting
for each program state the set of logical structures describ-
ing all heap states that may arise there, starting with some
initial heap description for the starting point of the pro-
gram/method. However, an unbounded number of con-
crete heap description may arise at program points. We
therefore introduce abstract heap descriptions using three-
valued logical structures that can themselves represent a
possibly infinite number of concrete two-valued logical
structures. A concrete logical structure is abstracted by
partitioning the individuals into equivalence classes such
that all individuals within one class yield the same truth
values for a predefined set A of abstraction predicates.
The individuals of the abstracted structures correspond to
these equivalence classes. Abstract individuals that may
represent more than one concrete individual are called
summary nodes. Predicates not in A need to be reeval-
uated and may evaluate to the indefinite truth value 1/2
iff not all concrete individuals summarized by the abstract
individual evaluate to the same definite truth value. Ab-
stracting the structure from Figure 1(a) under A = {x}
results in the 3-valued logical structure depicted in Fig-
ure 2, where dotted arrows represent predicates evaluating
to 1/2 and summary nodes are drawn doubly circled.

x 1 2,3next

next

Figure 2. Abstract shape graph embedding
in particular the structure from Figure 1(a).

To model the effects of program statements on abstract
heap descriptions the same update formulæ as in the con-
crete setting are used and simply evaluated using 3-valued
logic. However, to increase precision, before applying up-
date formulæ the relevant parts of the structure are con-
cretized (focus or partial concretization). As focusing may
generate contradicting or less precise structures, after ap-
plication of the update formula, the resulting structures
are coerced into more precise structures and contradicting
structures are completely removed.

3 An Allocation-Site Aware Shape Analysis

In order to make the previously described framework
allocation-site aware, we associate with each heap object
where and when it was allocated. The number of alloca-
tion sites is statically known and for most programs very
small. Hence, to model where an object was allocated, we
introduce additional unary predicates allocm ∈ A such
that allocm(u) = 1 iff u was allocated at program loca-
tion m. Furthermore, to model when the object was al-
located, we construct a function t\ : U 7→ N that maps
individuals of a concrete structure to invocations of an al-
location site. In an abstract structure, we map to intervals
of possible invocations: t : U 7→ I, where the set of in-
tervals is defined as I = {[l, u] |l ∈ N ∧ u ∈ N ∧ l ≤ u}.
Analogously, we can add functions s\ and s to associate
heap objects with their (requested) sizes. Summarization
of two individuals v1 and v2 is adapted as follows. Let the
new summary node be vsm, then t(vsm) = t(v1) t t(v2)
and s(vsm) = s(v1) t s(v2) where [l1, u1] t [l2, u2] =
[min {l1, l2} ,max {u1, u2}]. The logical predicates are
reevaluated as in the stateless framework.

Consider the C program given in Listing 1. Figure 3
shows an abstract allocation-site aware shape graph de-
scribing the possible heap states occuring after executing
line 4. Being more precise than existing data structure
analysis, we can identify two data structures and associate
their objects precisely with the same occurrence of malloc
in program line 12.

In a real-time setting, shape analysis can be performed ar-
bitrarily precise. As in the general setting, we can add
instrumentation predicates to increase precision, but we
can also deactivate abstraction, i.e. summarization of in-
dividuals, completely as no unbounded structures may
arise due to known loop and recursion bounds. How-
ever, abstract heap structures are still desirable as they
may lead to significantly shorter analysis time. The fol-
lowing set of (instrumentation) predicates and additional

2

Listing 1. C program working on linked lists
1 int main() {
2 list ∗ p = buildList(16, ...);
3 list ∗ data = buildList(256, ...);
4 list ∗ x = data;
5 ...
6 }
7 list ∗ buildList(int size, ...) {
8 list ∗ result;
9 ...

10 while(...) {
11 ...
12 ... = malloc(sizeof(list));
13 ...
14 }
15 return result;
16 }
17 struct dll el ∗ copy(struct sll el ∗ src) {
18 struct dll el ∗ result;
19 ...
20 while (src != NULL) { /∗ loop bound exactly 256 ∗/
21 ... = malloc(...);
22 ...
23 free(...);
24 ...
25 }
26 ...
27 return result;
28 }

p
r_p

alloc_12
size [8,8]

site invoc. [1,1]

r_p
alloc_12
size [8,8]

site invoc. [2,16]

next

data r_data
r_x

alloc_12
size [8,8]

site invoc. [17,17]

r_data
r_x

alloc_12
size [8,8]

site invoc. [18,273]

next

x

next

next

Figure 3. Analysis result after execution of
line 4. site invoc corresponds to our t
function.

precision increasing techniques have shown good trade-
offs between precision and complexity of allocation-site
aware shape analyses. To separate different data struc-
tures, a predicate rx(v) modeling reachability from pro-
gram variables is used: rx(v) := ∃u.x(u) ∧ fr(u, v)∗,
where x and fr are predicates corresponding to pointer
variables and field references, respectively. Deallocated
objects are not removed but marked as freed by a unary
predicate deallocated(v). We further increase precision
of partial concretization w.r.t. numeric intervals by allow-
ing the analysis to mark predicates modeling field refer-
ences with superscripts < and >, indicating that, iff the
predicate evaluates to true, both arguments to the predi-
cate are allocated directly after or before each other at the
same allocation site. We also introduce an additional ab-
straction technique that substitutes in intervals of length

1, as in [5, 5], the numerical value by newly introduced
variables, yielding in the example the interval [i, i]. This
enables embedding of structures that differ only in numer-
ical values used as interval bounds. The shape graph de-
picted in Figure 4 is one of the 3 shape graphs arising after
execution of line 25, when embedding is extended as de-
scribed.

result
r_result

alloc_21
size [12,12]

site invoc. [s,s]

r_result
alloc_21

size [12,12]
site invoc. [s+1,i-2]

next<

next<

r_result
alloc_21

size [12,12]
site invoc. [i-1,i-1]

next<

src
r_ts

alloc_12
size [8,8]

site invoc. [i,i]

r_ts
alloc_12
size [8,8]

site invoc. [i+1,256]

next<

next<

deallocated
alloc_12
size [8,8]

site invoc. [1,i-1]

next<
next<

Figure 4. A possible heap state at line 25.

4 Applications

Applying an analysis as discussed in the previous sec-
tion yields sets of allocation-site aware shape graphs for
an analyzed program. Information extracted from these
graphs can be used to enable program transformations
that increase timing predictability and can even constitute
analysis results for other, subsumed analyses. This sec-
tion gives an overview on how information from shape
graphs can be of benefit and sketches the applications for
allocation-site aware shape analysis we identified so far.

4.1 Allocation Behavior Analysis
Our main motivation was to enable a more precise

timing analysis for hard real-time applications. For pro-
grams with statically derivable regularities in object life-
times, replacing dynamic memory allocation by a precom-
puted static allocation scheme yields many advantages.
The memory addresses of heap allocated objects become
known to the timing analysis and unpredictability intro-
duced by the memory allocator is removed together with
the allocator itself.

The precomputation of suitable memory addresses for
heap objects as proposed in [3] relies on a formal descrip-
tion of a program’s allocation behavior. This formal de-
scription is given by a six-tuple, (M,U,L,A, C,B). M is
the set containing all allocation sites and U contains upper
bounds on how often each allocation site may be reached,
i.e. how often this function call may be invoked. Addi-
tional knowledge about the relations between elements of
U , such as u1 < u2, is collected in the set L. For each
allocation site m, a function fm is constructed such that
fm(i) evaluates to an interval describing the size of the
memory block requested the i-th time allocation site m
is reached. A is the set of all such functions. The set R
where R =

{
(m, i) | m ∈M ∧ i ∈ N≤um∈U

}
contains

all allocation requests that may occur during program ex-
ecution. C is a conflict function C : 2R 7→ {0, 1} that

3

evaluates to 1 iff its argument requests at least two mem-
ory blocks with overlapping lifetimes. To exploit simple
cache placement heuristics, a bias function B is given as
B : (R × R) 7→ {0, 1} where B(r1, r2) evaluates to 1 iff
the block requested in r1 is likely to be accessed prior to
the one requested in r2. While M can be directly extracted
from the program code, U and L are often provided by the
user. A is constructed from M , L, and the requested sizes.
These sizes, the conflict function C, and the bias function
B have to be derived by a static program analysis. The size
of a heap object—or requested memory block—is explic-
itly stored in the shape graphs. Functions B and C can
be extracted from an allocation-site aware shape analysis
as follows. B(r1, r2) evaluates to 1 iff there exists a field-
pointer predicate evaluating to true for the individuals rep-
resenting r1 to r2, C evaluates to 1 iff representatives of at
least two elements of its argument set are present in the
same shape graph and none is marked as deallocated.

4.2 Cache Analysis for Heap Allocated Objects
For programs from which we cannot statically remove

dynamic memory allocations, a cache-aware predictable
memory allocator may be used. Such an allocator as pro-
posed in [5] can be guided with respect to the cache set
mapping of returned addresses via an additional cache set
argument. Knowing to what cache sets the memory lo-
cations of heap objects are mapped, cache and subsequent
WCET analyses may be able to predict cache hits or cache
misses for accesses to dynamically allocated objects. Fail-
ing to be able to correctly classify a significant number of
memory accesses as cache hits or misses would result in
high overestimations of a program’s WCET. A shape anal-
ysis as proposed in this paper can be used to automatically
find suitable cache set arguments for allocated objects by
extracting program logical structures from the resulting
shape graphs (see Section 4.3) and applying a suitable
cache set mapping strategy to the respective structures.
Also, combining a cache analysis [1] with an allocation-
site aware shape analysis is current on-going work.

4.3 Combined Data Structure and Escape Analysis
Data Structure Analysis attempts to identify disjoint in-

stances of program logical data structures and their inter-
nal and external connectivity properties [6]. An escape
analysis categorizes objects into escaping and not escap-
ing their allocating function [11]. An object is said to
escape the function it was allocated in if it may still be
accessible after returning from this function. The aim of
such an analysis is typically to identify objects that can
be allocated on the stack instead of the heap to increase
program performance.

Both analysis results can be extracted from allocation-
site aware shape graphs. A program logical data struc-
ture can always be defined as a connected component of
the shape graph. With more knowledge about the data
structures used in a program, we can even introduce new
predicates to more precisely associate heap objects with

program logical data structures. To identify escaping ob-
jects, we check within the shape graphs occurring at the
exit point of functions whether objects allocated within
the function are reachable from returned, static or class
objects or also arguments to the analyzed function. Ob-
jects passed as arguments to functions called within the
analyzed method also escape. Reconsider Figure 3 de-
scribing all possible heap states after execution of line 4
of our example code, where an allocation-site aware shape
analysis was able to separate all heap allocated objects
into two disjoint data structures. Existing data structure
analyses like [6] yield a much less precise overapproxi-
mation associating all heap objects with one structure.

5 Conclusions

The current stateless shape analysis framework via 3-
valued logic can be extended to track information about
where and when heap objects were allocated as well as
their respective sizes. For applications of shape analysis
considered within the community so far, this additional
information is not necessary and only tends to increase
analysis times. However, for hard real-time programs, ap-
plications have emerged that depend on this additional in-
formation. Additionally, performance of static analyses is
less critical in this setting as the analyzed programs are
normally less complex and higher analysis times are justi-
fiable.

References

[1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache
behavior prediction by abstract interpretation. In SAS ’96,
London, UK, 1996. Springer-Verlag.

[2] B.-Y. E. Chang and X. Rival. Relational inductive shape
analysis. In POPL ’08, New York, NY, USA, 2008. ACM.

[3] J. Herter and S. Altmeyer. Precomputing memory loca-
tions for parametric allocations. In WCET’10, 2010.

[4] J. Herter and J. Reineke. Making dynamic memory alloca-
tion static to support WCET analyses. In WCET’09, 2009.

[5] J. Herter, J. Reineke, and R. Wilhelm. CAMA: Cache-
aware memory allocation for WCET analysis. In Proceed-
ings Work-In-Progress Session of the 20th Euromicro Con-
ference on Real-Time Systems, 2008.

[6] C. Lattner and V. Adve. Data structure analysis: A fast and
scalable context-sensitive heap analysis. Technical report,
University of Illinois at Urbana-Champaign, 2003.

[7] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for verification: A case study. In
ISSTA, 2000.

[8] J. Reynolds. Separation logic: A logic for shared mutable
data structures. IEEE Computer Society, 2002.

[9] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Program-
ming Languages and Systems, 24(3), 2002.

[10] M. Schoeberl. Time-predictable cache organization. In
STFSSD ’09, Washington, DC, USA, 2009.

[11] J. Whaley and M. Rinard. Compositional pointer and es-
cape analysis for java programs. SIGPLAN Not., 34(10),
1999.

4

