
CAMA: A Predictable Cache-Aware Memory Allocator

Jörg Herter∗, Peter Backes∗, Florian Haupenthal∗, and Jan Reineke†
∗Department of Computer Science, Saarland University, Saarbrücken, Germany

E-Mail:{jherter, rtc}@cs.uni-saarland.de, haupenthal@gigasun.cs.uni-saarland.de
† Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

E-Mail: reineke@eecs.berkeley.edu

Abstract—General-purpose dynamic memory allocation al-
gorithms strive for small memory fragmentation and good
average-case response times. Hard real-time settings, in con-
trast, place different demands on dynamic memory allocators:
worst-case response times are more important than average-
case response times. Furthermore, predictable cache behavior
is a prerequisite for timing analysis to derive tight bounds on
a program’s execution time.

This paper proposes a novel algorithm that meets these
demands. It guarantees constant response times, does not cause
unpredictable cache pollution, and allocations are cache-set
directed, i.e., allocated memory is guaranteed to be mapped
to a given cache set. The latter two are necessary to enable a
subsequent precise static cache analysis.

Keywords-Dynamic storage allocation; WCET analysis; pre-
dictability

I. INTRODUCTION

General-purpose dynamic memory allocation algorithms
are designed to provide good average-case response times
while causing little fragmentation. While this behavior meets
the demands of most applications, different requirements
arise for real-time programs. In real-time applications, each
operation must have a bounded execution time. To be able
to give tight bounds on the worst-case execution times
for real-time systems, memory allocators need to guarantee
constant response times. Most general memory allocators
fail to satisfy this criterion by having worst-case response
times in O(n) or O(log n), where n is the number of free
blocks managed by the allocator.

However, constant response times are not enough. Due
to the large gap between processor and memory speed,
execution times strongly depend on cache performance.
Today’s dynamic memory allocators introduce unpredictable
cache behavior. Therefore, static WCET analyses [1] fail
to determine precise bounds on a program’s execution time
when dynamic memory allocation is used.

Current dynamic memory allocators introduce unpre-
dictability in two ways. First, such allocators provide no
guarantees about the cache set that an allocated block maps

This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). This
work was also partly supported by the European Network of Excellence on
Embedded System Design ARTIST-Design.

to. Static cache analyses rely on this information to classify
memory accesses as cache hits or cache misses, which is
necessary to determine precise WCET bounds. The second
source of cache unpredictability stems from the execution of
the allocator itself. Modern allocators manage free memory
blocks in internal data structures on the heap. Finding a
free block to satisfy allocation requests involves traversals
of these structures to find suitable blocks. These traversals
and hence their effects on the cache are unpredictable.
As a consequence, information about cache contents is
lost, whenever the allocator is run and its internal data
structures are traversed. Furthermore, the unpredictability of
the cache performance during the traversal itself leads to
drastic overestimations of the execution times of memory
(de)allocations.

In this paper, we present CAMA, a novel constant-time
dynamic memory allocator that eliminates these sources of
unpredictability. To enable cache-aware memory allocation,
CAMA receives allocation requests with a target cache
set as an additional argument. The cache influence of the
allocation procedure itself is bounded and statically known.

Predictability and hence compatibility with WCET anal-
yses are achieved as follows. Free blocks are managed in
segregated free lists to allow for constant look-up times and
hence constant response times. Our allocator uses cache-
aware splitting and coalescing techniques to keep external
fragmentation low. Internal fragmentation is reduced by
using a multi-layered segregated-list approach similar to
TLSF’s approach [2].

In the design of CAMA, we explicitly avoided to intro-
duce the unpredictability general purpose allocators inflict
on the cache behavior. With these issues removed, existing
techniques [3], [4] and tools [5] for WCET analysis should
be able to cope with applications for which tight bounds on
the WCETs could previously not be determined due to the
unpredictability of dynamic allocation, once CAMA is used
as the allocator.

A. Overview

The remainder of this paper is organized as follows. We
elaborate on the problems that dynamic memory allocation
imposes on the determination of WCET bounds in Section II
and present related work in Section III. In Section IV, we



describe our cache-aware memory allocation algorithm and
its implementation. For a set of real-time applications, we
compare worst-case execution time bounds and memory
consumption of CAMA to that of TLSF, and, in the case
of memory consumption, to that of Doug Lea’s allocator in
Section V.

II. HARD REAL-TIME, CACHES, DYNAMIC MEMORY
ALLOCATION, AND WORST-CASE EXECUTION TIMES

Real-time applications are programs for which the cor-
rectness of operations depends not only upon their func-
tional correctness, but also upon the time in which they
are performed. In soft real-time systems, operations may
sometimes miss their deadlines, upon which the system may
respond with decreased quality of service. Consider, for
example, a software for displaying video. If some operation
does not finish in a timely manner, single frames may be
dropped while displaying a video. Hence, the application
does not fail completely, but the quality is decreased. In hard
real-time systems, however, all operations must meet their
deadlines. Within operations of a hard real-time system it is
imperative that an event is reacted to within a strict deadline.
Such strong timing constraints are required of applications
for which reacting in time is safety-critical. Consider for
example an airbag controller that has to correctly and timely
detect a crash and fire the appropriate airbags. Failure to
finish within a few milliseconds may be fatal.

Caches are used to bridge the increasing gap between
processor speeds and memory access times. A cache is a
small but fast memory that stores a subset of the contents of
the main memory. Still, due to the principle of locality, the
cache is able to serve most of the memory accesses. This
enables caches to drastically improve the average latency of
memory accesses. To reduce cache management and data
transfer overhead, the main memory is logically partitioned
into a set of memory blocks. The size of such a memory
block is usually a power of two. Memory blocks are cached
as a whole in cache lines of equal size. This way the
block number is determined by the most significant bits
of a memory address. When accessing a memory block,
the system has to determine whether the memory block is
currently present in the cache or if it needs to be fetched
from main memory. To enable an efficient look-up, each
memory block can be stored in a small number of cache lines
only. For this purpose, caches are partitioned into equally-
sized cache sets. The size of a cache set, i.e., the number of
cache lines it consists of, is called the associativity of the
cache. At present, the associativity ranges typically from 1
to 32. The number of cache sets is usually also a power
of two so that the set number can be determined by the
least significant bits of the block number, the index. The
remaining bits, known as the tag, are stored along with the
data to decide whether and where a memory block is cached
within a set. Since the number of memory blocks that map to

a set is usually far greater than the associativity of the cache,
a so-called replacement policy must decide which memory
block to replace upon a cache miss.

Cache analyses [6], [7] strive to derive tight bounds on
the cache performance. To obtain such bounds, they have to
classify memory accesses as cache hits or cache misses. A
memory access constitutes a cache hit if it can be served
by the cache, otherwise, in case of a cache miss, it has to
be relayed to main memory. The better the classification of
accesses as cache hits or cache misses, the tighter are the
obtained bounds on execution times. To classify memory
accesses, a cache analysis needs to know the mapping of
program data to cache sets to determine which memory
blocks compete for the cache lines of cache sets.

Using a standard, general purpose dynamic memory allo-
cator, no knowledge about the mapping of allocated data
structures to cache sets is statically available to a cache
analysis. Assume, for example, a program would allocate
six memory blocks to store objects of a linked list structure.
Two possible mappings from those allocated memory blocks
to cache sets are given in Figure 1 (a) and (b), respectively.
For clarity, we assume a simple four-way cache-associative
cache with four cache sets.

Sets

Lines

(a)

Sets

Lines

(b)
Figure 1. Two possible cache mappings of six dynamically allocated
objects organized in a singly-linked list.

For the mapping depicted in Figure 1 (a) a further traversal
of the list would yield only cache misses. However, given the
mapping depicted in Figure 1 (b), in a subsequent traversal
of the list, all six accesses to memory could be served by
the cache. A conservative cache analysis with no knowledge
about the addresses of allocated memory has no option other
than to classify all accesses to allocated memory as cache
misses, while during actual program runs all accesses may



be cache hits.
In order to give precise WCET bounds, a WCET analysis

has to implement such a cache analysis. Conservatively
classifying each memory access as a cache miss is not an
option, as turning off the cache easily causes a thirty-fold
increase in execution time [8].

Dynamic memory allocators manage free and in-use
blocks of memory. They need on the one hand to have fast
response times to allocation and deallocation requests and on
the other hand to minimize fragmentation, i.e., the amount
of free memory not usable to satisfy allocation requests.
Free memory blocks are managed by an allocator in some
internal data structure. To satisfy an allocation request, a
dynamic allocator chooses a free block according to some
placement choice. I.e., the allocator has to decide which
free block to return in order to minimize fragmentation. In
general, this process contains a traversal of—at least parts
of—the internal data structure. Each free block traversed
will be loaded into the cache. If it is statically not derivable
which blocks will be traversed, allocating memory influences
the cache in an unpredictable manner (unpredictable cache
pollution). Deallocating in-use blocks means to reinsert these
blocks into the internally managed data structure holding
free blocks. This also causes unpredictable cache pollution
when a suitable place at which to insert the block has to be
determined by a traversal of the data structure.

Hence, to enable precise WCET analyses, more demands
on dynamic memory allocators arise. For such scenarios,
dynamic allocators (1) need to have constant or tightly
bounded allocation and deallocation times, (2) they must not
cause unpredictable cache pollution, and (3) the cache sets
newly allocated blocks start in must be statically derivable.
While allocators meeting the demand for constant or at least
reasonable tightly boundable execution times exist [2], [9],
[10], cache awareness as implied by demands (2) and (3)
has not yet been considered.

III. RELATED WORK

Cache-conscious allocators have also been proposed by
Chilimbi et al. [11]. However, their motivation was to
improve program execution times, while we strive for pre-
dictability. Chilimbi’s memory allocator takes as a second
argument to the allocation request a pointer to an already
existing object that is likely to be accessed contemporane-
ously with the one to be allocated. The allocator then tries
to allocate memory for the new object next to the given one.
As a result, newly allocated storage is likely to be mapped
to the same memory block as the referenced storage, leading
to a cache hit when accessing the second object.

Constant-time segregated-list allocators are well-known
and understood. However, they tend to produce very high
fragmentation. TLSF [2], a dynamic memory allocator for
real-time systems, alleviates the fragmentation problem of
segregated list allocators. TLSF first groups blocks whose

sizes are within the same power-of-two interval, i.e., larger
than 2n but smaller than 2n+1. Each power-of-two interval
is then divided into a fixed number of k classes, s.t. the jth

such class contains all blocks with sizes s where

s ∈
(
2n +

2n

k
· j; 2n +

2n

k
· (j + 1)

]
This two-layered approach to building size classes possesses
less potential for internal fragmentation. For real-world
programs, TLSF produces fragmentation similar to Doug
Lea’s memory allocator [12], currently considered to be
amongst the best general allocators.

A completely different approach to enable dynamic mem-
ory allocation for hard real-time systems was proposed
in [13]. This paper presents algorithms to compute a static
allocation for programs using dynamic memory allocation.
Their algorithms strive to produce static allocations that
lead to minimal derivable WCET bounds in a subsequent
WCET analysis. Of course, transforming dynamic allocation
to static allocation needs further assumptions: e.g. that all
loop bounds and the block sizes that are requested are
statically known. These assumptions are reasonable for hard
real-time applications. However, good memory performance
can only be achieved with this approach when exploitable
regularities in the program’s allocation behavior can be
statically derived.

IV. CACHE-AWARE ALLOCATION

In the design of CAMA, we aimed at constant response
times for allocation and deallocation requests, the possibility
to guide the allocator with respect to which cache set the
returned memory addresses are mapped to, and the absence
of unknown influences on the cache by (de)allocation op-
erations. We added an additional parameter to allocation
requests, so that the memory allocation function now has
two parameters: the requested block size and the cache set
that the block’s memory address shall map to.

A. General Memory Management

CAMA is a multi-layered segregated fit allocator very
similar to TLSF. That is, CAMA organizes free blocks
in segregated lists, while a single segregated list contains
all memory blocks within the same size class and whose
memory addresses map to the same cache set.

Formally, we associate with each free memory block a
tuple (addr , size), where addr is the starting address of the
free block and size is its size (in bytes). Let B denote the set
of all such tuples associated with the free blocks currently
managed by our allocator. Furthermore, let Sk,i,j denote the
set of tuples associated with all the free blocks whose start
addresses map to cache set k and whose size is in the interval
Ii,j defined as

Ii,j =

(
2i +

2i

jmax + 1
· j; 2i + 2i

jmax + 1
· (j + 1)

]
.



I.e., all Sk,i,j are disjoint and formally defined as

Sk,i,j = {(addr , size) ∈ B |⌊
addr

sizecline

⌋
≡ k mod sets ∧ size ∈ Ii,j

}
where sizecline denotes the size of a cache line and sets the
number of sets. Note that each power-of-two size class is
divided into jmax + 1 linearly increasing classes.

If we enforce a minimum size for managed memory
blocks and choose imin appropriately, the set of all Sk,i,j is
a partition on B, i.e. ⊎

0≤k≤sets
imin≤i≤imax

0≤j≤jmax

Sk,i,j = B.

We associate a segregated list with each set Sk,i,j and put
all memory blocks associated with tuples in Sk,i,j into the
segregated list associated with Sk,i,j . Satisfying an allocation
request for a block of size size whose memory address is
mapped to cache set k′ is reduced to determining the set
Sk,i,j with which such a block would be associated and
then returning any block from the segregated list associated
with this set. This set can be determined in constant time
by computing its index triple (k, i, j) as

k = k′,

i = blog2(size)c ,

j =

⌊
size − 2i

2i−jmax

⌋
.

For deallocation, we have to determine the appropriate
segregated list to hold the newly freed memory block. This
list depends on the size of the block. We directly store a
pointer to the appropriate free list at the block to save the
computation of i, j and speed up deallocation.

B. Splitting and Merging Techniques

While an allocator as described above would already meet
all stated real-time demands, it might cause enormous frag-
mentation for real programs. With the approach described
so far, two small consecutive free blocks cannot be used to
satisfy a request for a larger block. Nor can larger blocks
be used to satisfy requests for smaller blocks. To alleviate
this, we need to add cache-aware splitting and merging
techniques.

Splitting denotes the ability to split larger blocks into
smaller blocks at allocation time in order to satisfy requests
for smaller blocks. To enable splitting, we proceed as
follows.

For each cache set k we introduce a bit vector

vk ∈ {0, 1}(imax−imin)(jmax+1)

so that the nth component of vk is 1 if and only if

Sk,n/jmax ,j′ 6= ∅

where j′ ≡ n mod jmax .
Hence, if we want to be able to use larger blocks to

satisfy requests for smaller blocks, we still compute the
address triple (k, i, j). However, we do not directly access
the segregated list associated with Sk,i,j but scan vk for the
first bit set to 1 starting from the (i · (jmax + 1) + j)th bit.
Assume this bit to be the n′

th component of vk. We can
then take a block from the list containing the free blocks
associated with the set

Sk,n′/jmax ,(n′ mod jmax )

to satisfy the request. In the current state of the allocator,
this list contains the smallest blocks large enough to satisfy
this request.

We split blocks from this list if they have a minimum size
large enough that after splitting a block

b ∈ Sk,n′/jmax ,(n′ mod jmax )

into two blocks b1 and b2 it holds that (a) b1 is suitable
to satisfy the original request, i.e., a tuple (addr , size)
associated with b1 would be an element of Sk,i,j according
to our partitioning. And (b) the size of b2 is at least the
minimum size for managed free blocks. Otherwise we do
not split but just return a larger block than requested from
the determined segregated free list to satisfy the allocation
request.

After splitting we need to insert b2 into the appropriate
free list. However, as we in general do not statically know
what block size was originally requested, we cannot derive
b2’s size nor its address’ mapping to cache sets. And even
if this were possible, we would not want the additional
cache pollution from accesses to arbitrary cache sets when.
Consider organizing our free lists in the usual way, i.e.,
consisting of the free memory blocks themselves, with
each free block containing pointers to its predecessor and
successor within the free list. Adding b2 to a free list would
generate four memory accesses for adjusting these links and
setting b2 as the new first block in the list. However, no
cache set mapping for any of these four accesses can be
statically determined. Hence, a subsequent cache analysis
would have to cope with four unknown cache accesses.

A cache-aware memory allocator should support subse-
quent cache analyses and provide some guarantees about
which cache sets may be accessed during allocation requests.
To achieve this behavior, we do not store free blocks directly
in the segregated free lists, but some descriptor blocks as
defined in Figure 4. Each allocated, i.e., in-use block then
stores a pointer to its descriptor block instead of a pointer to
its appropriate free list. The free lists contain the descriptor
blocks of free memory blocks instead of the free blocks
themselves. The appropriate free list for a descriptor block
can be determined in constant time from the information
stored in this block (namely, its size and starting address).
Additionally, the information located at descriptor blocks is



back

free_list content/payload

next

Figure 2. A memory block managed by CAMA. back is a pointer to the
associated descriptor (for a large block); next points to the next block in
the free list (for a small block that is free); free list points to the free list
of the associated size class (for a small black that is in use).

sufficient to enable cache-aware constant-time merging upon
deallocation as discussed later.

A descriptor block contains the following information. A
pointer to the free block for whose management it is used as
well as the size of this block. This pointer start and the size
entry size are used to compute the address triple (k, i, j) to
identify the appropriate free list to insert the block into when
it is deallocated.

k =

⌊
start

sizecline

⌋
mod sets,

i = blog2(size)c ,

j =

⌊
size − 2i

2i−jmax

⌋
.

where sizecline again denotes the size of a cache line.
One bit of the size entry is used as a free bit indicating

whether the memory block referred to by this descriptor
block is currently free or in-use. To enable merging, the
descriptor block further stores pointers to the free blocks
physically adjacent to the memory block associated with
this descriptor. Finally, as descriptor blocks are organized
in doubly-linked lists, pointers to its pre- and successors in
the list are also stored at each block. CAMA guarantees to
place such descriptor blocks exclusively at memory locations
mapped to a predefined range of cache sets. Figures 2 depicts
the layout memory blocks.

Figure 3 illustrates this memory management. The figure
shows a fragment of memory with 3 free memory blocks
managed by our algorithm. Each block has a corresponding
descriptor block located in a part of memory that is mapped
to the predefined range of cache sets (depicted as dark gray
shaded areas).

Storing management information in descriptor blocks
instead of the free blocks themselves enables us to do
splitting—and merging—in a cache-aware manner. However,
this comes at the price of increasing internal fragmentation.
Working on descriptor blocks instead of working directly
on the free blocks they manage, reduces inserting a block
b2 split from a larger block to creating a new descriptor
block and inserting this descriptor block into the appropriate
free list. This way, all memory accesses performed during
insertion are to memory locations whose cache-set mappings

prev:
next:
left:
right:
start:

prev:
next:
left:
right:
start:

prev:
next:
left:
right:
start:

Figure 3. A fragment of memory managed by CAMA. The dark gray
shaded memory area may be used for descriptor blocks, light gray areas
are for the free or in-use memory blocks managed by the allocator only.

are statically known.
Merging denotes the ability to merge consecutive free

blocks into a single large free block at deallocation time in
order to later satisfy requests for larger blocks. As noted
earlier, each in-use block stores a pointer to its descriptor
block. Such a descriptor block contains pointers to managed
blocks residing in memory locations adjacent to the memory
location the block managed by this descriptor resides in.
If a memory block is deallocated, we just have to check
if its left-adjacent or right-adjacent neighboring blocks are
currently free. To determine whether a memory block is
currently in-use or free, we use an additional bit within
the block’s descriptor block. If one or both adjacent blocks
are currently free, we merge these blocks into a single
free block. This merging again reduces to updating entries
in descriptor blocks requiring only predictable memory
accesses. Upon merging two memory blocks, one descriptor
block becomes free. As the memory blocks are merged into
one block, one descriptor is used to manage this new block,
while the descriptor of the second memory block is not
needed anymore. For deallocating descriptor blocks, CAMA
manages an additional free list for descriptors into which
after merging unneeded descriptor blocks are inserted. The
splitting operation uses this free list to allocate and thus
reuse descriptor blocks. Only if the descriptor free list is
empty, new memory for descriptor blocks is requested from
the underlying operating system.

Descriptor blocks may pose a problem for very small
blocks. If a program allocates many small memory blocks
and the descriptor blocks for these are almost as large or
even larger than the blocks themselves, memory waste would
be overly high. And even worse, as descriptor blocks are
restricted to map to a certain cache set range, many small
blocks would force the allocator to request many almost
unused memory pages just to store management information.
Hence, descriptor blocks should only be used for memory
blocks of a reasonable minimal size. This size threshold
sizethresh is in our current implementation set to

sizethresh =
sizecpage − sizeds

numberds

where sizecpage denotes the size (in bytes) of a cache page1,

1The size of a cache page equals the size of a cache line multiplied by
the number of cache sets.



sizeds the bytes usable for descriptor blocks per cache page
according to the predefined mapping to cache sets, and
numberds the number of descriptor blocks that fit into sizeds
bytes. This way, we ensure that the number of memory
blocks managed via descriptors per cache page does not
exceed the number of descriptors available on the same
cache page. For blocks smaller than this size threshold, we
deactivate splitting and merging completely. Hence, the only
management overhead occurring from blocks smaller than
the size threshold are the back links to the segregated lists
the blocks reside in after deallocation.

C. Summary

In summary, the proposed algorithm works as follows.
For the sake of readability, we omit the special treatment
for small blocks.

Logically, we partition the free blocks managed by our
allocator into disjoint sets of blocks that start in the same
cache set and are within the same size class. Our allocator
keeps a doubly-linked list for each such set. However,
instead of organizing the free blocks directly in segregated
lists, these linked lists instead store descriptor blocks for the
free blocks. Those descriptor blocks are of fixed size and
the allocator guarantees to place these blocks exclusively
in memory locations mapped to a known range of cache
sets. This range of cache sets can be increased to decrease
potential fragmentation at the price of reducing the number
of cache sets available for regular memory blocks. To enable
the allocator to use larger blocks to satisfy requests for
smaller blocks, we also store a bit string of length of the
number of segregated lists. Each bit is associated with a
segregated list and indicates whether this list is empty or
not.

The allocator handles an allocation request for size bytes
starting at cache set k by computing which segregated list
L contains the smallest blocks large enough to satisfy this
request. The bit sequence is then read and the first bit set to 1
is searched within the substring starting at the bit associated
with L and ending with the bit associated with the list
containing the largest free blocks whose starting addresses
are mapped to cache set k. If such a bit is found, the first
entry from the associated segregated list is removed and the
free block referred to by this entry is used to satisfy the
request. Depending on its size, it is either directly returned or
split into a block just large enough to satisfy the request, and
a remainder. Splitting is done by creating a new descriptor
block for the emerging new free block and updating the
descriptor block of the block to be split. If no suitable blocks
are available, new memory is requested from the underlying
operating system. All these operations need constant time
and touch only memory locations with a statically known
mapping to cache sets.

The same holds for deallocation requests. Upon dealloca-
tion the allocator checks whether adjacent blocks in memory

struct descriptor {
struct descriptor *left, *right, *prev, *next;
void *start;
ssize t size /*includes an in-use bit*/;
};

Figure 4. Definition for descriptor block structures/objects.

Input: size: size of the block to be allocated
set : cache set at which to start the block

Output: pointer to first byte of allocated memory
size += sizeof(∗block);
size = max{size,MIN BLOCK SIZE};
size = dsize/ALIGNMENTe ·ALIGNMENT;
set i and j to the levels corresponding to size;
set i2 and j2 to the levels of the first list atab[set ][i2][j2]
that has at least one free block, with either i2 > i, or
i2 = i and j2 ≥ j;
if no such list exists then
block = add memory(set , i, j, size);

else
block = split memory(set , i2, j2, size);

end if
return block + sizeof(∗block);

Figure 5. camalloc: allocate a memory block

are currently unused. If so, adjacent free blocks are merged
into a larger free block by adjusting the descriptor blocks
of the involved memory blocks. Finally, the descriptor block
of the now free block is added to its appropriate free list.
Given the address and size information within the descriptor
block, the appropriate free list can be easily computed.

Pseudo code for the main operations of our prototype
implementation of CAMA is given in Figures 5 and 6. The
structure definition for the descriptor blocks used in these
algorithms is given in Figure 4. We use the sign bit of the
size component of such a descriptor to indicate whether a
memory block is free or in use. However, we address this
information in the pseudo code like a normal component
(named in use).

The following program constants are used within the
pseudo code. CS denotes the number of cache sets provided
by the target hardware. The number of size classes per
cache set is given by SL and TL, where SL equals to
imax − imin , TL to jmax . In the current implementation,
those constants are set to 11 and 4, respectively, with
imin = 4 and imax = 15. The size of a descriptor block
is denoted by DESC BLOCK SIZE. MIN BLOCK SIZE
denotes the minimum block size for memory blocks man-
aged by CAMA.

V. EVALUATION

A. Memory Fragmentation

We used the standard approach to measure the memory
fragmentation behavior of CAMA. That is, we extracted



Input: ptr : address of the memory block to be freed
block = ptr − sizeof(∗block);
if block~header ≥ &atab[0][0][0]
∧ block~header < &atab[CS][SL][TL] then
append block to free list block~header ;
set respective bit;
return

end if
d = block~header
dl = d~ left
dr = d~right
d~ in use = false
if dr 6= NULL
∧ dr~start = block + d~size
∧ dr~ in use = false then
set i and j to the levels corresponding to dr~size;
set set to cache set of the byte pointed to by dr~start ;
remove dr from atab[set ][i][j];
clear bit if list is now empty;
d~size += dr~size;
d~right = dr~right ;
remove dr from descriptor list;
put dr into descriptor free list;
dr = d~right ;

end if
if dl ∧ dl~ in use = false
∧ dl~start + dl~size = block then
set i and j to the levels corresponding to dl~size;
set set to the cache set of dl~start ;
remove dl from atab[set ][i][j];
clear bit if list is now empty;
dl~size += d~size;
dl~right = dr;
remove d from descriptor list;
put d into descriptor free list;
d = dl;
dl = d~ left ;

end if
if dr = NULL
∧ program break is at d~start + d~size then
dl~right = NULL;
remove d from descriptor list;
move program break down to d~start ;
put d into descriptor free list;
return

end if
set i and j to the levels corresponding to d;
set set to the cache set of d~start ;
append d to free list atab[set ][i][j];
set respective bit;

Figure 6. cafree: deallocate a memory block

(de)allocation traces from real programs and let the alloca-
tor process these sequences of allocation and deallocation
requests. We refrained from generating synthetic traces for
benchmarking as we agree with Wilson et al. that the
regularities existing in real programs are not well enough
understood to model them formally and perform probabilis-
tic analyses that are directly applicable to real program
behavior [14].

The field of application for a cache-aware constant time
memory allocator is restricted to hard real-time systems.
Hence, the set of programs used for benchmarking should
consist mainly of such applications. However, in hard real-
time applications, dynamic memory allocation is usually
avoided due to the unpredictable timing behavior introduced
by the allocator. Still, the MiBench benchmark suite [15],
which consists of a set of commercially representative em-
bedded programs, contains six test cases that make use of
dynamic memory allocation. These six test cases execute the
programs Susan, Patricia, and Dijkstra, each on a
set of small and large input data, respectively.
Susan was developed for recognizing corners and edges

in magnetic resonance images of the brain. The technique
embodied by the program is also patented as a method
for digitally processing images to determine the position
of edges and/or corners therein for guidance of unmanned
vehicles. The small input data run processes a black and
white image of a rectangle while the large input data run
processes a complex picture.
Patricia: A patricia trie is a data structure used in

place of full trees with very sparse leaf nodes. Patricia tries
are often used to represent routing tables in network appli-
cations. These benchmarks use patricia tries to construct a
routing table.
Dijkstra constructs a large graph (as an adjacency

matrix) and then computes the shortest paths between pairs
of nodes using repeated applications of Dijkstra’s algorithm.

To compare CAMA to existing memory allocators, we
used the same set of benchmark traces on Doug Lea’s
memory allocator2 (DLMalloc) and TLSF3.

Figure 8 shows the complete results of our measurements.
Figure 7 compares the absolute memory consumption of the
three allocators. We computed the degree of fragmentation
as the percentage of (allocated) memory exceeding needed
memory. I.e., if a program needs at most 100kb of con-
temporaneously allocated memory but 125kb are allocated,
fragmentation would be 25%. The figures show that overall
the memory consumption of all allocators is comparable.
Only in the Patricia large test case, CAMA and
TLSF have a—in absolute terms—significantly higher mem-
ory consumption.

For allocation requests CAMA needs an additional cache

2Version 2.8.4; from http://g.oswego.edu/dl/html/malloc.html
3Version 2.4.5; from http://rtportal.upv.es/rtmalloc/node/8



DLMalloc
TLSF

CAMA

m
em

or
y

co
ns

um
pt

io
n

(k
ilo

by
te

s)

A B C D E F

1,000

2,000

3,000

4,000

Figure 7. Absolute memory consumption for the following test cases taken
from the MiBench test suite: Susan small (A), Susan large (B),
Patricia small (C), Patricia large (D), Dijkstra small
(E), and Dijkstra large (F).

set parameter telling the allocator the cache set the returned
memory address shall be mapped to. In real life, this param-
eter is either set by a timing analysis while analyzing the
program or by the programmer himself. Obviously, choos-
ing unsuitable cache set arguments can almost arbitrarily
increase fragmentation. Using just random numbers may not
produce results applicable to real programs. Computing the
optimal cache set arguments may on the other hand lead
to too optimistic results. We therefore set the cache set
arguments according to very simple heuristics as the av-
erage programmer would probably do. Two heuristics were
sufficient for all test cases. The first assumes that memory is
never deallocated and just put consecutively in memory. It
then simulates this behavior and sets cache set arguments to
the cache set that the start addresses of allocated blocks are
mapped to in its simulation. This heuristics was used in the
Susan test cases. The second returns cache set a n-times,
then n-times cache set (a + 1) and so on. The assumption
here is that n successively allocated memory blocks fit into
one cache line. We used this with the Dijkstra and
Patricia tests.

In summary, this benchmark result is very encouraging.
There is a test case where fragmentation seems overly
high (Dijkstra), but this program allocates only a small
amount of memory and hence CAMA’s (and also TLSF’s)
address table has a large impact on the memory consump-
tion. CAMA’s address table to look up the appropriate
segregated listsneeds roughly 6,000 bytes. This is already
more memory than is needed by the Dijkstra test case.
Hence, we believe the most meaningful results are obtained
from the Patricia and Susan large test cases. In
those cases the memory need of the programs is large enough
to render the influence of the address tables on fragmentation
negligible.

Application Memory Consumption & Fragmentation

Susan small

Memory Need 155,979 bytes
DLMalloc 159,744 bytes 2.414%
TLSF 169,216 bytes 8.486%
CAMA 178,320 bytes 14.323%

Susan large

Memory Need 2,333,809 bytes
DLMalloc 2,334,720 bytes 0.039%
TLSF 2,344,512 bytes 0.459%
CAMA 2,356,156 bytes 0.958%

Patricia small

Memory Need 435,640 bytes
DLMalloc 610,304 bytes 40.094%
TLSF 789,504 bytes 81.229%
CAMA 703,128 bytes 61.401%

Patricia large

Memory Need 2,508,880 bytes
DLMalloc 3,514,368 bytes 40.077%
TLSF 4,527,104 bytes 80.443%
CAMA 4,020,312 bytes 60.243%

Dijkstra small

Memory Need 5,880 bytes
DLMalloc 8,192 bytes 39.320%
TLSF 21,504 bytes 365%
CAMA 26,168 bytes 445%

Dijkstra large

Memory Need 5,264 bytes
DLMalloc 8,192 bytes 55.623%
TLSF 21,504 bytes 408%
CAMA 14,324 bytes 272%

Figure 8. Memory consumption of DLMalloc, TLSF, and CAMA. Memory
need denotes the minimal memory need of the program, i.e., the maximal
number of bytes that are contemporaneously allocated at some program
point. Fragmentation is computed as

(
memory used
memory need

− 1
)
·100%; CAMA

was instantiated for 128 cache sets and a cache line size of 64 bytes.

When compared to standard memory allocators, constant
response times come at the cost of higher fragmentation. In
contrast to general allocators, constant time allocators cannot
apply some best fit strategy to find the best free block to
satisfy an allocation request, but have to do with a first fit
strategy that in constant time finds some block suitable to
satisfy the request. That this price is not necessarily overly
high was already shown by Masmano et al. for their constant
time allocator TLSF [2]. Our benchmark results indicate that
adding cache awareness does not significantly increase the
costs already paid for constant-time behavior any further.

Considering the benchmark results more closely, it seems
surprising that CAMA outperforms TLSF in some test
cases. Intuitively, adding cache awareness can only increase
fragmentation, not reduce it. The better memory perfor-
mance of CAMA is due to the different treatment of small
blocks compared to TLSF. CAMA stores no information
for later splitting or merging for small blocks, resulting in
less management overhead. Patricia and Dijkstra,
however, request many small blocks that can never be split
or merged anyway. Hence, CAMA’s strategy works better
for these programs. For the Susan test cases as well as
Dijkstra small, we get the intuitively expected results.
Here, cache awareness increases fragmentation slightly.
These test cases allocate just a small number of blocks.
Hence, the larger amount of segregated lists CAMA needs
to manage gives TLSF an advantage. The fragmentation
created by both allocators is roughly the same and CAMA’s
larger address table for the segregated lists causes its higher



memory consumption.

B. Execution Times

In hard real-time settings, the most meaningful perfor-
mance measure for execution time is the provable worst-case
execution time, that is, a statically provable upper bound on
a program’s worst-case execution time.

Figure 9 shows the provable WCET for requests for
differently sized free blocks posed to the two real-time
allocators. In the case of CAMA, we requested each size
mapped once to each cache set. All time bounds where
determined using aiT, an industrial worst-case execution
time analyzer (http://www.absint.de/ait/). As execution times
are hardware dependent, we had to determine these values
with respect to a fixed target hardware. To obtain meaningful
results, we chose an existing target platform: the Pow-
erPC MPC603e which is widely used in embedded systems.
This hardware possesses separate data and instruction caches
with 128 cache sets each and a cache line size of 32 bytes.

The figure shows two values for TLSF per requested block
size. The black value is the one obtained from analyzing
TLSF in the version as provided for download. The light
gray value is obtained from a slightly modified version of
TLSF in which we replaced the internal computation of
logarithms by a faster, more predictable implementation and
bypassed the check whether the allocator was already ini-
tialized, as CAMA provides an explicit initialization method
and performs no such check. Hence, CAMA’s WCET for
allocation requests can be bounded by 9,935 cycles, TLSF’s
by 13,026 and 16,260 cycles, respectively.

3 4 8 16

8
9

10
11
12
13
14
15
16
17

log2 of requested block size

W
C

E
T

(p
ro

ce
ss

or
cy

cl
es
·1
0
3

on
a

M
PC

60
3e

)

TLSF

TLSF

CAMA

Figure 9. Provable WCET bounds for different allocation requests.

Surprisingly, the provable WCET of CAMA is still sig-
nificantly smaller than that of TLSF, although one would
expect TLSF to have a slightly smaller WCET bound, as
both allocators perform basically the same operations in
the worst case with CAMA having to deal with descriptor
blocks and a three-dimensional addressing scheme and TLSF
with a two-dimensional one. The reason for this is entirely

struct task_descr* lowPriority = low;
struct task_descr* highPriority = high;
for(i = 0; i < HUGE_LIST_SIZE; i++) {

for(j = 0; j < SMALL_LIST_SIZE; j++) { // high prioritized tasks waiting?
high = high->next;
...

}
high = highPriority;
low = low->next; // next lower prioritized task waiting?
...

}
low = lowPriority;

Figure 10. The main loop body of a simplified task scheduler.

implementation dependent. When additional memory needs
to be requested from the underlying operating system, TLSF
calls its free()-method to insert new memory blocks into
appropriate free lists. While this prevents code duplication,
the overhead of the method call adds significantly to TLSF’s
WCET.

The provable WCET for deallocation procedures on this
hardware are 6,891 cycles for CAMA and 5,703 cycles for
TLSF.

In summary, besides implementation issues, both CAMA
and TLSF have about the same provable WCETs for alloca-
tions and deallocations. Hence, neither memory consumption
nor provable WCET of a program is expected to be increased
by using a cache-aware memory allocator compared to using
a non-cache-aware allocator.

But what can actually be gained by adding cache aware-
ness? To thoroughly answer this, a novel cache analysis
would be needed which takes into account CAMA’s cache
set argument as well as its additional cache guarantees.
Unfortunately, such an analysis does not yet exist. However,
to still roughly demonstrate the impact of cache awareness
on WCET bounds, we analyzed a simplified task scheduler
for which we could manually annotate at least the stati-
cally available information about the cache-set mapping of
dynamically allocated objects. The scheduler manages two
singly-linked lists composed of task descriptors with maxi-
mally 4 and 16 entries, respectively. The smaller list is used
for high priority tasks, the other for all other tasks. Assume
CAMA is used to ensure that all high-priority objects map
to cache set 0 and other objects are equally spread over sets
1 to 127. Analyzing the WCET of the program fragment
given in Figure 10 using aiT then yields an upper bound
on the WCET of 6,505 cycles on a PowerPC MPC603e.
With statically unknown cache-set mappings, however, only
a WCET of 10,915 cycles can be guaranteed on the same
hardware.

Note that the analyzed code does not contain any in-
vocations of the memory allocator, so the gain in WCET
guarantees is completely attributed to the analysis being able
to exclude that objects of the lower prioritized list evict
higher priority objects from cache, which leads to the safe
prediction of cache hits when traversing the higher priority
list again.



VI. CONCLUSIONS

For hard real-time applications tight bounds on the exe-
cution times of memory (de)allocation requests are not suf-
ficient. On modern embedded hardware, cache performance
has a large influence on the overall system performance.
Hence, dynamic memory allocators suitable for use in hard
real-time systems have to provide predictable cache behav-
ior. Otherwise, tight bounds on the cache performance of an
application and hence its execution times cannot be statically
determined.

CAMA provides a predictable cache behavior in the sense
that it (a) can be guided with respect to which cache set
allocated memory is mapped to and it (b) guarantees to
access only a statically known subset of the available cache
sets a constant number of times while processing allocation
and deallocation requests. Furthermore, CAMA’s execution
times can be tightly bound.

Our benchmark results indicate that cache awareness does
not necessarily increase the fragmentation already paid for
constant response times any further and when it does,
fragmentation is still not overly high.

TLSF is already successfully used within soft real-time
systems. This indicates that the price paid for real-time be-
havior in fragmentation is not prohibitively high. Hard real-
time systems still rely exclusively on static memory alloca-
tion as the cache influence of dynamic memory allocators
introduces too much uncertainty about cache performance.
CAMA provides guarantees about its cache behavior for a
similar price paid in fragmentation as for real-time guar-
antees alone. It therefore seems reasonable to believe that
CAMA can enable the use of dynamic memory allocation
within hard real-time systems.

ACKNOWLEDGMENT

The authors thank Andreas Abel for his help in perform-
ing the aiT analyses.

REFERENCES

[1] R. Wilhelm et al., “The worst-case execution time problem—
overview of methods and survey of tools,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 7, no. 3,
2008. [Online]. Available: http://dx.doi.org/10.1145/1347375.
1347389

[2] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF: A
new dynamic memory allocator for real-time systems,” in
Proceedings of the 16th Euromicro Conference on Real-Time
Systems. Washington, DC, USA: IEEE Computer Society,
2004, pp. 79–86. [Online]. Available: http://dx.doi.org/10.
1109/ECRTS.2004.35

[3] S. Thesing et al., “An abstract interpretation-based timing
validation of hard real-time avionics,” in Proceedings of
the International Performance and Dependability Symposium
(IPDS). IEEE Computer Society Press, June 2003, pp.
625–632. [Online]. Available: http://dx.doi.org/10.1109/DSN.
2003.1209972

[4] C. Ferdinand et al., “Reliable and precise WCET
determination for a real-life processor,” in Proceed-
ings of EMSOFT 2001. London, UK: Springer-
Verlag, 2001, pp. 469–485. [Online]. Available:
http://portal.acm.org/citation.cfm?id=646787.703893

[5] C. Ferdinand, “Worst case execution time prediction by
static program analysis,” Parallel and Distributed Processing
Symposium, International, vol. 3, p. 125a, 2004. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2004.1303088

[6] C. Ferdinand and R. Wilhelm, “Fast and efficient cache
behavior prediction for real-time systems,” Real-Time
Systems, vol. 17(2/3), pp. 131–181, 1999. [Online]. Available:
http://dx.doi.org/10.1023/A:1008186323068

[7] J. Reineke, “Caches in WCET analysis,” Ph.D.
dissertation, Universität des Saarlandes, November 2008.
[Online]. Available: http://rw4.cs.uni-saarland.de/∼reineke/
publications/DissertationCachesInWCETAnalysis.pdf

[8] M. Langenbach, S. Thesing, and R. Heckmann, “Pipeline
modeling for timing analysis,” Proceedings of SAS, vol. 2477,
2002. [Online]. Available: http://portal.acm.org/citation.cfm?
id=647171.716098

[9] J. L. Peterson and T. A. Norman, “Buddy systems,”
Communications of the ACM, pp. 20(6):421–431, 1977.
[Online]. Available: http://dx.doi.org/10.1145/359605.359626

[10] T. Ogasawara, “An algorithm with constant execution time
for dynamic memory allocation,” 2nd Int. Workshop on Real-
Time Computing Systems and Applications, 1995. [Online].
Available: http://dx.doi.org/10.1109/RTCSA.1995.528746

[11] T. M. Chilimbi, M. Hill, and J. R. Larus, “Making
pointer-based data structures cache conscious,” Computer,
vol. 33, pp. 67–75, 2000. [Online]. Available: http:
//dx.doi.org/10.1109/2.889095

[12] D. Lea, “A memory allocator,” Unix/Mail 6/96, 1996.

[13] J. Herter and J. Reineke, “Making dynamic memory
allocation static to support WCET analyses,” in Proceedings
of 9th International Workshop on WCET Analysis, June 2009.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2009/2284/pdf/Herter.2284.pdf

[14] P. R. Wilson, M. S. Johnstone, M. Neely,
and D. Boles, “Dynamic storage allocation: A
survey and critical review,” in Proceedings of
the International Workshop on Memory Management.
Springer-Verlag, 1995, pp. 1–116. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645647.664690

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “Mibench: A free, commercially
representative embedded benchmark suite,” in WWC ’01:
Proceedings of the Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 3–14. [Online].
Available: http://dx.doi.org/10.1109/WWC.2001.15


