Towards a Formal Definition of Timing Predictability

Daniel Grund

Saarland University, Saarbrücken, Germany

RePP Workshop, Oct 2009
Outline

1 Motivation

2 Predictability
 - Disambiguation
 - Definitions

3 Component Model
 - Individual Components
 - Composition

4 Summary & Questions
Outline

1 Motivation

2 Predictability
 - Disambiguation
 - Definitions

3 Component Model
 - Individual Components
 - Composition

4 Summary & Questions
Motivation

- Complexity of embedded systems increases
- They become more and more “unpredictable”

- With current methods
 - computation of WCET bounds will become infeasible or
 - computed bounds will be useless

⇒ Need better analyses or more predictable systems

Also true for schedulability and response-time analysis?
Motivation II

- To design predictable systems one should know what predictability means, right!?
- People mean different things when saying “predictability”
- Criteria for predictability are mostly
 - intuitive
 - case-based
 - phenomenological, symptom-based
Predictability: better | worse

pipeline | in order | out of order
branch prediction | static | dynamic
cache organization | private | shared caches
replacement policy | LRU | PLRU

- This is based on intuition and experience
- Is there an underlying principle?
Goals

- Disambiguate meanings and clarify notions
- Derive definitions/criteria that are
 - formal
 - uniformly applicable
 - reason-based
Outline

1 Motivation

2 Predictability
 - Disambiguation
 - Definitions

3 Component Model
 - Individual Components
 - Composition

4 Summary & Questions
What is Predictability?

Oxford Dictionary

predictable: adjective, able to be predicted
to *predict*: verb, state that (a specified event) will happen in the future

- Predictability is a property of a system
- Definition should not depend on specific analysis techniques

Proposition

The notion of predictability should capture if, and how precise, a property can be predicted by any analysis.
Alternative Point of View

- Would like to consider analysis costs
- predictable: able to be predicted with reasonable effort

Alternative proposition

The notion of predictability should capture if, and how precise, a property can be predicted by any efficient analysis

- How to argue about all efficient analyses?
- What is efficient?
- Complicates matters even more
Non-determinism

- In deterministic systems one can predict properties exactly
- However, there is non-determinism
- The amount of non-determinism determines the quality of a prediction
 ⇒ Determine and distinguish sources of non-determinism

- Next: Property “Time”
Notions in Timing Analysis

- BCET/WCET: Best- and worst-case execution time
- LB/UB: Lower and upper bound
No analysis can do better than [BCET, WCET]
- This interval limits the precision of predictions
 ⇒ Intrinsic (inherent) / Predictability

- An efficient analysis has to abstract and can only predict [LB, UB]
 ⇒ Extrinsic (ascribed to analysis) / Predictability’
Non-determinism in Execution-Times

Execution time of a program p on a given system depends on
- the system input
- the initial hardware state

In addition: abstraction-induced variance
Input- and state-induced variance

Overest.
Disambiguation II

- Uncertainty about state shows up at the “beginning”
 - Implies set of possible initial hardware states

- Uncertainty about input shows up during execution
 - Implies set of possible transitions

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-induced predictability variance due to different initial states</td>
</tr>
<tr>
<td>Input-induced predictability variance due to different inputs</td>
</tr>
</tbody>
</table>
State, Input, Execution Time

- Let Q denote the set of all system states
- System is input-deterministic
- Let I denote the set of all inputs
- e.g. streams of sensor values
- Let $T_p(q, i)$ be the execution time of program p, starting in hardware state $q \in Q$ with input $i \in I$.

Daniel Grund

Predictability Definition

RePP’09 16 / 29
Definition: Predictability

\[
Pr_p(Q, I) := \min_{q_1, q_2 \in Q} \min_{i_1, i_2 \in I} \frac{T_p(q_1, i_1)}{T_p(q_2, i_2)}
\]

- Captures maximal variance in execution time
- Measure is within \([0..1]\)
- 1 means perfectly predictable (= Berkeley-repeatable?)
State-induced and Input-induced Predictability

Definition: State-induced Predictability

\[\text{SIPr}_p(Q, I) := \min_{q_1, q_2 \in Q} \min_{i \in I} \frac{T_p(q_1, i)}{T_p(q_2, i)} \]

Definition: Input-induced Predictability

\[\text{IIPr}_p(Q, I) := \min_{q \in Q} \min_{i_1, i_2 \in I} \frac{T_p(q, i_1)}{T_p(q, i_2)} \]

- Predictability comprises state- and input-induced predictability
- \(\text{SIPr}_p \cdot \text{IIPr}_p \leq Pr_p \)
Problems With These Definitions

- Definitions based on observable behavior (time)
- But we want to capture its reasons
 ⇒ What is the reason for the variance?

- Definitions depend on a program
- But predictability is system property
 ⇒ How to quantify over all programs?
Outline

1 Motivation

2 Predictability
 ▪ Disambiguation
 ▪ Definitions

3 Component Model
 ▪ Individual Components
 ▪ Composition

4 Summary & Questions
Components

- System consists of connected components
- Each component has
 - component state
 - component input
- State of all components determines system state
What is the reason for the variance?

- Variance should appear in individual components
- Variance in components “somehow” adds up

Goal: Come up with model that is compositional wrt. predictability

1. Characterize variance/predictability of each component
2. Use compositionality to deduce system predictability
How to quantify over all programs?

- Program can be seen as part of system input
- Anyway, \(\{ \text{Program, System input, System state} \} \) induce component input
- Over-approximate component input
- For now, consider all component inputs
Example: Caches

- State: cached blocks and status of replacement algorithm
- Input: sequences of accesses
- Output: \((Hit | Miss)^*\)
- Characterize predictability
State-induced variance
for different classes of inputs
From Percentages to Timing Variance

- Graph showed events
- Events can be associated with times
- Times do not simply add up
- E.g. penalties might mask each other out
Composition

- Which information do we need about components to achieve compositionality?
- That is, how to abstract?
- Certainly not by a graph like the previous one
- What sizes are appropriate to describe components?
- Input-output relation?
Outline

1 Motivation

2 Predictability
 - Disambiguation
 - Definitions

3 Component Model
 - Individual Components
 - Composition

4 Summary & Questions
Predictability is variance due to inherent system properties
Difficult to restrict to “efficient” analysis

How do we achieve compositionality wrt. predictability?
What information do we need about components to achieve this?
Likely, I am biased to WCET determination: can you concretize my terms into your domain?