A Template for Predictability Definitions with Supporting Evidence

Daniel Grund1 Jan Reineke2 Reinhard Wilhelm1

1Saarland University, Saarbrücken, Germany
2University of California, Berkeley, USA

Workshop on Predictability and Performance in Embedded Systems
Outline

1. Motivation & Problem
2. Key Aspects of Predictability
3. Supporting Evidence
4. Summary
Outline

1 Motivation & Problem

2 Key Aspects of Predictability

3 Supporting Evidence

4 Summary
Motivation

The Platitude

Complexity of embedded systems increases. They become more and more “unpredictable.”

- **Timing analysis**
 - current methods will not scale to future systems
 - need better analyses or more predictable systems

- **Projects**
 - **PREDATOR**: design for predictability and efficiency
 - **PRET**: reintroduce timing predictability and repeatability
 - **MERASA**: guarantee analyzability and predictability
The Problem

- We don’t know what predictability actually is or should be
- People mean different things when saying “predictability”
- Criteria for predictability are mostly
 - intuitive
 - case-based
 - phenomenological, symptom-based
Examples

<table>
<thead>
<tr>
<th>Predictability</th>
<th>better</th>
<th>worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU pipeline</td>
<td>in order</td>
<td>out of order</td>
</tr>
<tr>
<td>branch prediction</td>
<td>static</td>
<td>dynamic</td>
</tr>
<tr>
<td>cache replacement</td>
<td>LRU</td>
<td>FIFO</td>
</tr>
<tr>
<td>scheduling</td>
<td>static</td>
<td>dynamic preemptive</td>
</tr>
<tr>
<td>arbitration</td>
<td>TDMA</td>
<td>FCFS</td>
</tr>
</tbody>
</table>

- This is mostly based on intuition
- Is there a common underlying principle?
Vision

- Derive formal definition of predictability
- In the ideal case
 - uniformly applicable
 - rather constructive than existential
Outline

1 Motivation & Problem

2 Key Aspects of Predictability

3 Supporting Evidence

4 Summary
What is Predictability?

Oxford Dictionary

<table>
<thead>
<tr>
<th>predictable</th>
<th>adjective, able to be predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>to predict</td>
<td>verb, state that a specified event will happen in the future</td>
</tr>
</tbody>
</table>

- Want to consider hardware/software systems
- That is, deterministic and finite systems
- Concretize above definition for such systems
Aspect 1: Property to be Predicted

- System behaviors can be described by a set of traces
- Exact behavior often irrelevant
- Derived properties are interesting

⇒ Which property of the system to predict?
 - number of certain events on a trace
 - maximal length of traces (WCET)
Aspect 2: Sources of Uncertainty

- Deterministic finite systems
 - Any property can be determined exactly
- However, properties depend on something unknown
 - Predictions shall hold in any case

⇒ What are the sources of uncertainty?
 - program input → execution time
Aspect 3: Quality Measure

- Generally, predictability is not a Boolean property
- Allow shades of gray
- How well can a property be predicted?

⇒ What is the quality measure on predictions?
Aspect 4: Inherence

Consider

- two systems \(S \) and \(T \)
- an analysis \(A \) for a system property \(P \)

Assume \(A \) can determine \(P \) for \(S \) better than for \(T \)

Should \(S \) therefore be more predictable than \(T \)?

We say no; there could be \(A' \) where it is vice versa

\(\Rightarrow \) Predictability should be a property inherent to the system
Proposition

The notion of predictability should capture if, and to what level of precision, a specified property of a system can be predicted by an optimal analysis.

- In particular, a definition should state
 - Property to determine
 - Sources of uncertainty
 - Quality measure
Example: Timing Predictability

Definition (Timing Predictability)

\[
\Pr_p(Q, I) := \min_{q_1, q_2 \in Q} \min_{i_1, i_2 \in I} \frac{T_p(q_1, i_1)}{T_p(q_2, i_2)}
\]

- Property: execution time of a program
- Sources of uncertainty: program input & hardware state
- Quality measure: variance in execution time
- Measure is within [0..1]
- 1 means perfectly predictable
Outline

1 Motivation & Problem

2 Key Aspects of Predictability

3 Supporting Evidence

4 Summary
Supporting Evidence?

- Work on architectural components that are better predictable
- Usually based on sensible, yet informal intuitions
- Try to cast that work in terms of our template
Examples — Part 1

- Lickly et al.: Pred. programming on a precision timed arch. (PRET)
- Bhat & Mueller: Making DRAM refresh predictable
- Barre et al.: A predictable SMT scheme for hard real-time

<table>
<thead>
<tr>
<th>Hardware unit</th>
<th>Property</th>
<th>Source of uncertainty</th>
<th>Quality measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread-interleaved pipeline and scratchpad memories</td>
<td>Execution time</td>
<td>Uncertainty about initial state and execution context</td>
<td>Variability in execution times</td>
</tr>
<tr>
<td>DRAM controller</td>
<td>Latency of DRAM accesses</td>
<td>Occurrence of refreshes</td>
<td>Variability in latencies</td>
</tr>
<tr>
<td>SMT processor</td>
<td>Execution time of tasks in real-time thread</td>
<td>Uncertainty about execution context, i.e., other tasks executing in non-real-time threads</td>
<td>Variability in execution times</td>
</tr>
</tbody>
</table>
Examples — Part 2

- Bodin & Puaut: A WCET-oriented static branch prediction scheme
- Schoeberl et al.: Towards time-pred. data caches for chip-MP
- Rochange & Sainrat: A time-pred. exec. mode for superscalar pipelines

<table>
<thead>
<tr>
<th>Hardware unit</th>
<th>Property</th>
<th>Source of uncertainty</th>
<th>Quality measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch predictor</td>
<td>Number of branch mispredictions</td>
<td>Analysis imprecision (Uncertainty about initial predictor state)</td>
<td>Statically computed bound (Variability in mispredictions)</td>
</tr>
<tr>
<td>Memory hierarchy</td>
<td>Number of data cache hits</td>
<td>(Percentage of accesses that can be statically classified)</td>
<td>Among others, uncertainty about addresses of data accesses</td>
</tr>
<tr>
<td>Superscalar out-of-order pipeline</td>
<td>Execution time of basic blocks</td>
<td>Analysis imprecision (Uncertainty about the pipeline state at basic block boundaries)</td>
<td>Qualitative: analysis practically feasible (Variability in execution times of basic blocks)</td>
</tr>
</tbody>
</table>
Discussion

- 13 works on predictability improvements tabulated in paper
- Most fit well into the predictability template
- Parameters are indeed instantiated differently
- Many approaches disagree on quality measure
 - evaluation of predictability improvement using analyses
 - practical approach
 - not conclusive on (inherent) predictability
Outline

1 Motivation & Problem

2 Key Aspects of Predictability

3 Supporting Evidence

4 Summary
Summary

- Key aspects of a predictability definition:
 - Property to be predicted
 - Sources of uncertainty
 - Quality measure
 - Inherence

- Predictability template provides mental frame
- Most works on predictability can be cast as template instance