
Fast Liveness Checking for SSA-Form Programs

Benoit Boissinot
ENS Lyon/LIP∗

France
benoit.boissinot@ens-lyon.fr

Sebastian Hack
INRIA/LIP∗

France
sebastian.hack@ens-lyon.fr

Daniel Grund †

Saarland University Germany
grund@cs.uni-sb.de

Benoît Dupont de Dinechin
STMicroelectronics

France
benoit.dupont-de-dinechin@st.com

Fabrice Rastello
INRIA/LIP∗

France
fabrice.rastello@ens-lyon.fr

ABSTRACT

Liveness analysis is an important analysis in optimizing com-
pilers. Liveness information is used in several optimizations
and is mandatory during the code-generation phase. Two
drawbacks of conventional liveness analyses are that their
computations are fairly expensive and their results are eas-
ily invalidated by program transformations.

We present a method to check liveness of variables that
overcomes both obstacles. The major advantage of the pro-
posed method is that the analysis result survives all program
transformations except for changes in the control-flow graph.
For common program sizes our technique is faster and con-
sumes less memory than conventional data-flow approaches.
Thereby, we heavily make use of SSA-form properties, which
allow us to completely circumvent data-flow equation solv-
ing.

We evaluate the competitiveness of our approach in an
industrial strength compiler. Our measurements use the
integer part of the SPEC2000 benchmarks and investigate
the liveness analysis used by the SSA destruction pass. We
compare the net time spent in liveness computations of our
implementation against the one provided by that compiler.
The results show that in the vast majority of cases our al-
gorithm, while providing the same quality of information,
needs less time: an average speed-up of 16%.

Categories and Subject Descriptors: F.3.2 [LOGICS
AND MEANINGS OF PROGRAMS]: Semantics of Pro-
gramming Languages—Program Analysis; F.3.3 [LOGICS
AND MEANINGS OF PROGRAMS]: Studies of Program
Constructs—Static Single Assignment, SSA

General Terms: Algorithms, Languages, Performance

∗LIP, Université de Lyon - ENS Lyon - CNRS - Inria - UCBL,
Lyon, France
†Partially supported by the German Research Foundation (GK
623)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CGO’08, April 5–10, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

Keywords: Liveness Analysis, SSA form, Dominance, Com-
pilers, JIT-compilation

1. INTRODUCTION

Liveness analysis provides information about the points in
a program where a variable carries a value that might still
be needed. Thus, liveness information is indispensable for
storage assignment/optimization passes. For instance op-
timizations like software pipelining, trace scheduling, and
register-sensitive redundancy elimination make use of live-
ness information. In the code generation part, particularly
for register allocation, liveness information is mandatory.

Traditionally, liveness information is computed by a data-
flow analysis (e.g. see [9]). This has the disadvantage that
the computation is fairly expensive and its results are easily
invalidated by program transformations. Adding instruc-
tions or introducing new variables requires suitable changes
in the liveness information: partial re-computation or degra-
dation of its precision. Further, one cannot easily limit the
data-flow algorithms to compute information only for parts
of a procedure. Computing a variable’s liveness at a pro-
gram location generally implies computing its liveness at
other locations, too.

In this paper, we present a novel approach for liveness
checking (“is variable v live at location q?”). In contrast to
classical data-flow analyses our approach does not provide
the set of variables live at a block, only its characteristic
function. The results of our analysis remain valid during
most program changes and, at the same time, allow for an
efficient algorithm. Its main features are:

1. The algorithm itself consists of two parts, a precom-
putation part, and an online part executed at each
liveness query. It is not based on setting up and sub-
sequently solving data-flow equations.

2. The precomputation is independent of variables, it only
depends on the structure of the control-flow graph.
Hence, precomputed information remains valid upon
adding or removing variables or their uses.

3. An actual query uses the def-use chain of the variable
in question and determines the answer essentially by
testing membership in precomputed sets.

4. It relies on connections between liveness, dominance,
and depth-first search trees, most of them only valid
under static single-assignment form (SSA).

SSA is a popular kind of program representation that
is used in most modern compilers. Earlier, SSA was only
used as an intermediate representation of the program dur-
ing compilation. Since then, SSA has also been proposed
to be used in the backend of a compiler, see [17] for ex-
ample. Nowadays, there exist several industrial and aca-
demic compilers using SSA in their backend, such as LLVM,
Java HotSpot, LAO[12], and Firm. Most recent research on
register allocation [3, 6, 14, 18] even allows for retaining the
SSA property until the end of the code generation process.
Even just-in-time compilers (Java Hot-Spot, Mono, LAO),
where compilation time is a non-negligible issue, make use of
its advantages. As we will see, the special conditions encoun-
tered in SSA-form programs make our approach possible at
all.

Finally, we rely on the following prerequisites to be met:

• The program is in SSA form and the dominance prop-
erty (see Section 2.2) must hold.

• The control-flow graph G = (V,E, r) of the program
is available.

• The dominance tree of the control-flow graph is avail-
able. Otherwise it is computable in O(|V |).

• A depth-first search tree of the control-flow graph is
available. Also computable in O(|V |).

• A list of uses for each variable, also known as def-
use chain is available. Having an easy-to-maintain
def-use chain is one of the major advantages of the
SSA form. Hence, def-use chains are often available
in SSA-based compilers. Updating the def-use chain
when adding or removing uses of a variable incurs vir-
tually no costs, quite contrary to updating liveness in-
formation on each change.

As one can see, our assumptions are weak and easy to meet
for clean-sheet designs. The SSA requirement is the main
obstacle for compilers not already featuring it.

In the next section we give a summary of control-flow
graphs, dominance, SSA and liveness. The main contribu-
tion is presented in Section 3: it introduces the concepts of
our approach and presents the main algorithm and its cor-
rectness proof. Section 4 provides additional details on op-
timization and extension of the algorithm. The main focus
of Section 5 is implementation efficiency, and Section 6 gives
and discusses evaluation results. Finally, Section 7 contrasts
this paper with other work, and Section 8 concludes.

2. FOUNDATIONS

This section introduces the notation used in this paper and
presents the theoretical foundations we will use. Readers
familiar with flow graphs, depth-first search, dominance and
the SSA form can skip ahead to Section 3.

2.1 Control-Flow Graphs

A control-flow graph (CFG)G = (V,E, r) is a directed graph
with a distinguished node r ∈ V that has no incoming edge.
Normally, the nodes of the CFG are the basic blocks of a
procedure each associated with a list of instructions.

D
F
S
subtree

Path of non-
back edges

cross edge

cross edge

back
edge

Figure 1. Back edges and cross edges

Let G = (V,E, r) be a CFG. A path P = (VP , EP) is an
induced subgraph of G for which holds:

EP = {(v1, v2), . . . , (vn−1, vn)}
for VP = {v1, . . . , vn}

This explicitly allows for trivial paths containing only a
single node. Note, that the existence of a trivial path does
not imply the existence of a self-loop in G. If a node v is
contained in a path p, we write v ∈ p.

Dominance

A node x in a control-flow graph dominates another node
y if every path from r to y contains x. The dominance is
said to be strict if additionally x 6= y. If x dominates y,
we write x dom y and x sdom y if the dominance is strict.
Further, we denote the set of dominated nodes of some node
v by dom(v). We write sdom(v) for dom(v)\{v}. The nodes
of the CFG and the dominance relation form a tree.

Depth-first Search

A depth-first search (DFS), e.g. see [22], induces a span-
ning tree on the CFG. Furthermore, it subdivides the edges
of the CFG into four classes:

tree edge Edge of the DFS tree.

back edge (u, v) where v is an ancestor of u in the DFS tree.
In figures, we will draw back edges with dashed lines.

forward edge (u, v) where u is an ancestor of v in the
DFS tree and (u, v) is not a tree edge.

cross edge All other edges.

Figure 1 sketches the different edge types in a DFS. Note
that cross edges always point in the “same direction” as they
lead to nodes that were already visited but are not ancestors
of their source. Since back edges play a major role in this
paper, we dedicate some notation to them:

E↑ = {(s, t) ∈ E | t is an ancestor of s}

To avoid confusion, parents are called parents in the DFS
tree and immediate dominators in the dominance tree; an-
cestors are called (proper) ancestors in the DFS and (strict)
dominators in the dominance tree. Clearly, if x dom y then
x is also an ancestor of y.

Reducible Control Flow A control-flow graph is called re-
ducible if for each back edge (s, t) the target t dominates the

source s (see [16]). To create irreducible control flow, loops
with multiple entries are necessary. From a language per-
spective, gotos are necessary to create irreducible control
flow. Because of its structural properties, the class of re-
ducible control-flow graphs is (and has long been) of special
interest for compiler writers. This is because the vast ma-
jority of programs (even with explicit use of gotos) exhibit
reducible CFGs.

2.2 SSA Form

SSA (static single assignment, see e.g. [11]), is a popular pro-
gram representation property used in many compilers nowa-
days. In SSA form, each scalar variable is defined only once
in the program text. To construct SSA form, the n defi-
nitions of a variable are replaced by n definitions of n dif-
ferent variables, first. At control flow join points one may
have to disambiguate which of the new variables to use. To
this end, the SSA form introduces the abstract concept of
φ-functions that select the correct one depending on con-
trol flow. A φ-function defines a new variable that holds the
control-flow-disambiguated value. See Figure 2 for an exam-
ple. We use the following notation: def (a) denotes the node
in the control-flow graph where variable a is defined. Fur-
thermore, uses(a) denotes the set of all control-flow graph
nodes where a is used.

x← . . . x← . . .

z← x + y

(a) non-SSA program

x1 ← . . . x2 ← . . .

x3 ← φ(x1, x2)
z ← x3 + y

(b) SSA program

Figure 2. Placement of φ-functions

In this paper, we will require the program under SSA form
to be strict. In a strict program with a CFG (V,E, r) every
path from r to a use of a variable contains a definition of
this variable. Under SSA, because there is only a single
(static) definition per variable, strictness is equivalent to the
dominance property : each use of a variable is dominated by
its definition.

Phi-Functions

φ-functions are somewhat peculiar in terms of how they
use their operands. Usually, an operation z← τ(x, y) is eval-
uated eagerly, i.e. the value of x and y have to be computed
in order to compute z. However, φ-functions are evaluated
lazily. Consider a φ-function z ← φ(x, y). Each operand is
associated with a control flow predecessor of the φ-function’s
block. If the φ-function’s block was reached via its i-th pre-
decessor, the i-th argument of the φ-function is assigned to
z.

This behavior suggests that the actual assignment is per-
formed“on the way”from the predecessor to the φ-function’s
block i.e. on the corresponding edge. In fact, when leaving
SSA, most compilers destruct φ-functions by inserting copies
in the appropriate predecessor blocks (e.g., see [4]). This im-
plies the following definition:

Definition 1. A variable x is used at a node v if:

1. Either v contains an instruction . . . ← τ(. . . , x, . . .)
where τ 6= φ,

2. or v is the i-th predecessor of some node v′ containing
a φ-function . . . ← φ(. . . , x, . . .) where x is the i-th
argument.

2.3 Liveness

A variable is live at some point if both:

1. its value is available at this point. This can be ex-
pressed as the existence of a reaching definition, i.e.
existence of a path from a definition to this point.

2. its value might be used in the future. This can be
expressed as the existence of an upward exposed use,
i.e. existence of a path from this point to a use that
does not contain any definition of this variable.

In fact, the reaching definition constraint is useful only for
non-strict programs. In such a case, an upward exposed use
at the entry of the CFG is a potential bug in the program
that usually lets the compiler dump a warning message (use
of a potentially undefined variable). With our assumption
the program being in strict SSA form (with dominance prop-
erty), liveness can be defined as follows:

Definition 2. A variable a is live-in at a node q if there
exists a path from q to a node u where a is used and that
path does not contain def (a).

Definition 3. A variable a is live-out at a node q if it is
live-in at a successor of q.

3. SSA LIVENESS CHECKING

3.1 Overview

We present a decision procedure for the question whether a
variable is live-in at a certain control-flow node. To avoid
notational overhead we will from now on consider the live-
in query of variable a at node q. The CFG node def (a)
where a is defined will be abbreviated by d. Furthermore,
the variable a is used at a node u. The basic idea of the al-
gorithm is simple. It is the straightforward implementation
of Definition 2:

For each use u we test if u is reachable from the
query block q without passing the definition d.

Our algorithm is thus related to problems such as computing
the transitive closure or finding a (shortest) path between
two nodes in a graph. However, the paths relevant for live-
ness are further constrained: they must not contain the defi-
nition of the variable. Hence, a large part of this paper deals
with describing these paths and how their presence (or ab-
sence) can be checked efficiently. To this end we split the
problem: we search for such a path by trying to incremen-
tally compose it of back-edge-free subpaths. The following
section summarizes the basic concepts of our investigation.
Section 3.3 presents the algorithm, and Section 3.4 provides
its correctness proof.

3.2 Concepts

Simple Paths The first observation considers paths that
do not contain back edges. If such a path starts at some
node q strictly dominated by d and ends at u, all nodes on
the path are strictly dominated by d. Especially, the path
cannot contain d. Hence, the existence of a back-edge-free
path from q to u directly proves a being live-in at q.

This gives rise to the reduced graph eG of G which contains
everything fromG but the back edges. If there is a path from
q to u in the reduced graph we say that u is reduced reachable
from q.

To be able to efficiently check for reduced reachability we
precompute the transitive closure of this relation. For each
node v we store in Rv all nodes reduced reachable from v.

Definition 4.

Rv = {w ∈ V | ∃ path v → w in eG}
Paths Containing Back Edges Of course, for the com-
pleteness of our algorithm we must also handle back edges:
consider Figure 3 and the query “is x live-in at node 10?”.
Although x is live-in at 10 no use of x is reduced reachable
from 10. However, the use of x at 9 is reduced reachable
from node 8, which is the target of the back edge (10, 8).
If a variable is live-in but no use is reduced reachable there
must be some back edge target from which the use is reduced
reachable. Consider the second query “is y live-in at 10?”.
The answer is “yes” but requires more indirection than the
previous example. One must traverse the back edge to 8, a
tree edge and a cross edge to 6, and finally the back edge
reaching the use in 5.

1

2

11

3

8

9

10

4

5

6

7

w =
x =
y =

= y = x

= w

Figure 3. An example CFG

Our goal is to answer a liveness query by testing for the
reduced reachability of uses from back edge targets. Hence, a
second part of our precomputation constructs for each node
q a set Tq that contains all back edge targets relevant for
this query. For this precomputation to make sense, these Tq

must be independent of variables. Thus, they must contain
all relevant back edge targets for any variable.

The first question is, given a specific query (q, a), how do
we decide which back edge targets of Tq to consider? Appar-
ently, this choice depends on the variable or more precisely
on its dominance subtree. Consider again node 10 but now
with variable w. All back edge targets (8, 5, 2) are reachable
from 10. But if we pick 2 to test if 4 (w’s use) is reduced
reachable, we get “yes”, but obviously w is not live at 10.

The problem is that 2 is not strictly dominated by def (w).
Thus, even if 2 is reachable from 10, reaching 4 from 2 re-
quires passing def (w) since 4 is dominated by 2. Therefore,
it is necessary to exclude all back edge targets of Tq that
are not strictly dominated by the definition of the variable
in question.

However, this condition is not strong enough as we will
see in the next example. Assume we want to test for x being
live-in at 4. The back edge target 8 is reachable via 4, 5,
6, 7, 2, 3, 8 and is inside the dominance subtree of def (x).
However, x is not at all live at 4. The problem is that to
reach 8 on a path from 4 the path must leave the dominance
subtree of def (x) and re-enter it.

The Main Principle The two last examples have in com-
mon that the paths first leave the dominance subtree and
then re-enter it. Thus, they always contain the definition
of the variable and do not comply with the requirements of
Definition 2. The dominance subtree however depends on
the actual variable whose liveness we are checking. That
seems to be contradictory to the statement that we want to
precompute the Tq sets independently of variables. However,
in the following we will show that the Tq sets can be precom-
puted such that taking the intersection Tq ∩ sdom(def (a))
will yield a set of representatives that is suitable for testing
a’s liveness at q. Therefore, we will construct the Tq such
that each t ∈ Tq is reachable from q along a path that never
re-enters any dominance subtree once it left it.

Definition 5.

T ↑t =
˘
t′ ∈ V \Rt | ∃s′ ∈ Rt ∧ (s′, t′) ∈ E↑

¯
T 0

q = {q}

T i
q =

[
t∈T i−1

q

T ↑t

Tq =

∞[
i=0

T i
q

Tq is defined recursively starting from q. To compute T i
q , the

set T ↑t is computed for each back edge target t in the previous

set T i−1
q . T ↑t contains exactly those back edge targets

1. whose sources are reduced reachable from t

2. from which t itself is not reduced reachable.

Hence, in each step, we will only add back edge targets
that will provide new reachability information. Further-
more, this will establish the property mentioned above, as
will be shown in Theorem 1. Section 5.2 describes how to
compute the Tq efficiently.

3.3 The Algorithm

Now let us give the live-in checking algorithm that relies
on the sets Rv and Tv being precomputed for each node v.
Regarding a live-in query (q, a), we first construct the set
T(q,a) = Tq ∩ sdom(def (a)) that contains all nodes of Tq

that are strictly dominated by def (a). Note that this set
is empty if q is not strictly dominated by def (a). Then we
use these nodes in T(q,a) and the precomputed Rv to test for
reachability of a use. The pseudocode of this procedure is
given by Algorithm 1.

Algorithm 1 Live-In Check

1: function IsLiveIn(variable a, node q)
2: T(q,a) ← Tq ∩ sdom(def (a))
3: for t ∈ T(q,a) do
4: if Rt ∩ uses(a) 6= ∅ then return true

5: return false

3.4 Correctness

Before the actual correctness proof, let us give a lemma and
a corollary about back-edge-free d-dominated paths, which
we will use in that proof.

Lemma 1. Let d strictly dominate two nodes t and u. If
there is a path p from t to u in G that is not strictly d-
dominated, then p contains a back edge.

Proof. Let y be a node of p that is not strictly dominated
by d. The only way to reach u from y is via d since d
dominates u. So p must contain d. Hence we have that d is
reachable from t along p. But t is also reachable from d ineG (d dominates t). So there is a cycle, consisting of a path

from t to d (a subpath of p) and a path in eG from d to t.
Since the latter part contains no back edge, p must contain
a back edge.

Corollary 1. If there is a path from t to u in the reduced
graph and t and u are strictly dominated by some d, then
every node on that path is also strictly dominated by d.

Now, let us show the correctness of Algorithm 1. First
we show the identity of liveness and the existence of strictly
dominated paths, and then use this equivalence in the main
correctness proof.

Lemma 2. Variable a is live-in at block q if and only if
there is a strictly d-dominated path from q to some use u
of a.

Proof. “⇐” Straightforward.

“⇒” According to Definition 2, if a is live-in at block q then
there exists a path p from q to u that does not con-
tain d. By contradiction: Suppose p is not strictly
d-dominated. Then, there exists some node y ∈ p that
is not strictly dominated by d. As u is strictly domi-
nated by d, any path from y to u must contain d.

Theorem 1. Algorithm 1 is complete and sound.

Proof.

Completeness We have to show that if there is a strictly
d-dominated path from q to some use u, the algorithm
returns true. Considering the loop in line 3 and the
check in line 4, we have to show: If there is a strictly
d-dominated path from q to u then there is a t ∈ Tq,
strictly dominated by d, and u is reduced reachable
from t.

Let p be the strictly d-dominated path. In the triv-
ial case that u ∈ Rq we have q ∈ T 0

q . Otherwise,

p is decomposed into subpaths in eG and back-edges
(sj , tj) ∈ E↑:

p = q, . . . , s1, t1, . . . , sk, tk, . . . , u

Without loss of generality, let p be minimal concern-
ing the number of back edges. Suppose, p contains
a back edge target tj that is reduced reachable from
tj−1. Then sj+1 (or u if j = k) is reduced reachable
from tj−1, too, which contradicts the assumption that
p is a shortest path. Thus, no back edge target in p is
ruled out by the definition of T ↑t . Hence, by construc-
tion, for each 1 ≤ i ≤ k: ti ∈ T i

q , and in particular
tk ∈ Tq from which u is reduced reachable.

Soundness Here, we have to show: If the algorithm returns
true there exists a strictly d-dominated path from q to
some use u. Again, considering Algorithm 1, this is
identical to the statement: If there is a t in Tq, strictly
dominated by d, from which u is reduced reachable,
then there exists a d-dominated path from q to u.

If t = q Corollary 1 applies. In the non-trivial case
there is a path

p = q, . . . , s1, t1, . . . , sk, tk, . . . , u

such that (si, ti) ∈ E↑, ti ∈ Tq, and d strictly domi-
nates tk.

We will show that all sub-paths of p are strictly d-
dominated. Since tk and u are strictly d-dominated,
Corollary 1 shows this for that part of p. For the re-
maining sub-paths we show the property by induction.

base case tk is strictly d-dominated by premise.

induction step Let ti be strictly d-dominated.

the part si, ti: Since ti is strictly dominated by d
and si is the direct predecessor of ti, si is
dominated by d. Hence it rests to prove that
d 6= si. d is a proper ancestor of ti because
it strictly dominates ti. Furthermore, ti is an
ancestor of si. Hence, d is a proper ancestor
of si and si 6= d.

the part ti−1, . . . , si: Assume ti−1 is not strictly
d-dominated. Then the path from ti−1 to si

must contain d (d dom si). Since this sub-
path contains no back edges, d is reduced
reachable from ti−1. Additionally, ti is re-
duced reachable from d, since d dominates ti
by induction hypothesis. Together, ti is re-
duced reachable from ti−1 contradicting the
definition of T ↑q . Thus, ti−1 is strictly d-dominated
and, again, Corollary 1 applies for the sub-
path ti−1 . . . si.

The remaining sub-path q, . . . , s1 is covered by think-
ing of the node q as t0.

4. FURTHER DETAILS

4.1 Ordering the Tq

The number of iterations spent in the loop of Algorithm 1
(line 3) depends on the order in which the elements of Tq

are iterated. Consider an iteration of that loop with some t.
Trivially, if there has already been an iteration for some
t′ ∈ Tq and t′ sdom t then the iteration with t will not return
true, either. This is because t is reduced reachable from t′

and thus Rt ⊆ Rt′ . Hence, it makes sense to order the back
edge targets by dominance.

For reducible CFGs this order is even optimal, i.e. leads to
the earliest exit possible. Furthermore, we show that dom-
inance implies a total order on the Tq for reducible CFGs.
Hence there is one t ∈ T(q,a) that dominates all others. Test-
ing reduced reachability from this t will provide the result
of the liveness query, and the loop can be left after the first
iteration.

Lemma 3. If the CFG is reducible, then for all q the dom-
inance relation is a total order on Tq.

Proof. If a strictly dominates b we say that a is the
larger and b the smaller element. To prove the lemma, we
will prove by induction that: First, for all i all nodes in some
T i

q are totally ordered by the dominance relation. And sec-

ond, all nodes in T i+1
q strictly dominate the largest element

of T i
q .

Let us start with T 1
q . Let t1 ∈ T 1

q and s1 be its correspond-
ing source. Because the CFG is reducible, t1 strictly dom-
inates s1. By construction s1 is reduced reachable from q.
Hence, because t1 is not reduced reachable from q (by con-
struction t1 ∈ V \Rq), t1 strictly dominates q. Now, because
dominance is a tree order and all elements of T 1

q dominate
a common element q, they are totally ordered by the domi-
nance relation.

The induction step from T i
q to T i+1

q is similar replac-

ing q by the largest element of T i
q and t1 by an element

of T i+1
q .

As noticed earlier, for t′ sdom t both in T(q,a), if u is re-
duced reachable from t′ then necessarily u is reduced reach-
able from t. This leads directly to the following theorem:

Theorem 2. If the CFG is reducible and a is live-in at q
then there is one unique t ∈ T(q,a) for which a use is reduced
reachable from t. This node dominates all others in T(q,a).

4.2 Live-Out

Now, let us use the results of the last section to implement
checking for variables being live-out. Reconsider the defini-
tion of live-out (Definition 3).

Our goal is to prove the presence or absence of a path
from a successor of q to a use u of a without running the
live-in test for all successors. Clearly, if such a path exists,
then there exists a non-trivial d-dominated path from q to u.
Hence, the live-out test is similar to the live-in test but with
two special cases:

1. If the query block q coincides with d, then a is live-out
at q if and only if a has a use that is not in q. Hence,
we can add a simple test; see line 2 in Algorithm 2.

2. Let the query block q be strictly dominated by def (a).
Then a is live-out at q if and only if there exists a non-
trivial strictly def (a)-dominated path from q to a use
u. The only difference to the live-in check is that the
path must be non-trivial, i.e. it must contain at least
one edge. Clearly, if u is reduced reachable form a t ∈
T(q,a), t 6= q then the corresponding path is non-trivial.
Otherwise, if it is only reduced reachable from q (i.e.
t = q), then the path is non-trivial only if u 6= q or q
is a back edge target (If q is a back edge target, there
exists a non-trivial path from q to q). This condition
is expressed in Algorithm 2 by the additional clause in
line 8.

Algorithm 2 Live-Out Check

1: function IsLiveOut(var a, node q)
2: if def (a) = q then
3: return uses(a) \ def (a) 6= ∅
4: if def (a) sdom q then
5: T(q,a) ← Tq ∩ sdom(def (a))
6: for t ∈ T(q,a) do
7: U ← uses(a)
8: if t = q and q is no back edge target then
U ← U \ {q}

9: if Rt ∩ U 6= ∅ then return true

10: return false

5. PRACTICAL CONSIDERATIONS

5.1 An Implementation using Bitsets

The liveness checks presented in the last section were dis-
cussed rather abstractly using sets and set operations. This
section is concerned with the efficiency of a practical im-
plementation. Since the average number of basic blocks is
about 36 in our benchmarks (see Section 6) we chose to
implement the precomputed sets as bitsets. For a 32-bit
machine that makes two machine words per block, which
is space- as well as time-efficient. Using bitsets requires a
numeration of the objects we want to put into them. The
results of Section 4.1 suggest using a preorder numeration of
the dominance tree, such that if a node dominates another,
it has a smaller number than the other one. The example
graph of Figure 3 exhibits such a numeration.

1. When constructing the T(q,a) set we only consider nodes
in Tq that are strictly dominated by def (a). Let num(q)
be the preorder number of q and maxnum(q) be the
largest preorder number in the dominance subtree of q.
The preorder numbers of all nodes strictly dominated
by q lie in the interval [num(q),maxnum(q)]. Hence,
we do not have to materialize the set T(q,a). We can
simply iterate over Tq, starting at num(def (a)) and
stopping at maxnum(def (a)).

2. The numeration will guarantee that dominating nodes
have a lower index in the bitset (closer to 0) than dom-
inated nodes. That means, if we traverse the bitset

starting at index 0, we will always find the “more dom-
inating” node first. According to Theorem 2, for re-
ducible CFGs it suffices to test the t ∈ Tq∩sdom(def (a))
that dominates all the others. By using the proposed
numeration, this node is given by the smallest set bit
in the range [num(q),maxnum(q)] of the bitset repre-
senting Tq.

Algorithm 3 shows the bitset-based liveness check. It is
a straightforward implementation of Algorithm 1 using the
facts stated above. A fact we discussed in Section 4.1 is used
at the end of the while-loop: If we have tested whether u
is reduced reachable from a node t, any test from a t′ dom-
inated by t yields the same result because t′ is reducibly
reachable from t. Hence, we can skip t’s dominance tree
completely and continue with the next node outside of it.
The index of this node is obtained by adding 1 to the max-
imal index in t’s dominance subtree. For reducible CFG’s,
Theorem 2 ensures that the while body is executed at most
once.1

Algorithm 3 Bitset implementation of the live-in check

bool is_live_in(var a, int q) {
int def = get_def_block_num(a);
int max_dom = get_max_num(def);

if (q <= def || max_dom < q)
return false;

int t = bitset_next_set(T[q], def + 1);
while (t <= max_dom) {

for (each u in def-use chain of a)
if (bitset_is_set(R[t], u))

return true;

t = get_max_num(t) + 1;
t = bitset_next_set(T[q], t);

}

return false;
}

The function bitset_next_set searches the next set bit
in a bitset starting form the given position (inclusive). It
returns the position of the next set bit or MAX_INT if no
further bit is set.

5.2 Precomputation

Let us briefly discuss how the sets Rv and Tv can be com-
puted efficiently. First, the Rv sets can be computed using
a topological order on the reduced graph (which is acyclic).
Such a topological order is provided by a reverse postorder
numeration created during the DFS on the CFG.

The Tv sets are calculated in a second pass since they rely
on the Rv sets to be present (see Definition 5). Consider the
following (directed) graph GT : Let its nodes be the nodes
of the CFG. For each node v let its set of successors be T ↑v .
Clearly, Tv is the set of nodes reachable from v in this graph.
Hence, the computation of Tv is similar to a transitive clo-
sure on GT . The following theorem shows more: The graph

1Of course, in that case the function can be further optimized by
replacing the while with an if.

GT is acyclic and Tv can be computed by

Tv = {v} ∪

24 [
w∈T

↑
v

Tw

35 (1)

Theorem 3. For all t′ ∈ T ↑t the DFS preorder number of
t′ is smaller than the DFS preorder number of t.

Proof. First, recall the definitions of back- and cross
edges as given in Section 2. A back edge always leads to
an ancestor and hence to a node with a smaller number. A
cross edge always leads to a node already visited in another
DFS subtree and thus also to a node with a smaller number.

Consider some t′ ∈ T ↑t and its corresponding source s′

(see Definition 5). If t is an ancestor of s′ then t′ is a proper
ancestor of t. Hence, it has a smaller number than t. If t
is not an ancestor of s′, s′ was reached from t via one (or
more) cross edge. Each cross edge leads to a DFS subtree
in which each node has smaller numbers than the origin of
the cross edge. Hence, s′ has a smaller number than t and
so has t′. See also Figure 1 for an illustration.

In practice, we first compute the Tv for all back edge tar-
gets using a DFS preorder exploiting Equation 1. Then, we
compute the set Ts \ {s} for each back edge source s by tak-
ing the union of the Tv sets of their back edge targets. The
results of the second part are then propagated through the
reduced graph, similar to computing the Rv sets, i.e. using
a DFS postorder. Finally, v is added to Tv for each node.

6. EXPERIMENTAL EVALUATION

We implemented our algorithm in the LAO open-source code
generator and compared its performance to the available
liveness analysis. The LAO code generator is used by STMi-
croelectronics to complement the Open64 framework in sev-
eral production compilers. More important, the LAO code
generator is also used by a just-in-time compiler for the Com-
mon Language Infrastructure (CLI) program representation
[10]. For this reason, it has been carefully profiled and tuned.

Our experimental evaluation consists of two parts. A
quantitative analysis of the sizes that influence liveness anal-
ysis to support our assumptions, and a runtime analysis of
both methods in the described environment. We compiled a
subset of ten programs of the integer part of the SPEC2000
benchmark suite with the LAO compiler. The benchmarks
252.eon and 253.perlbmk are missing because they use li-
brary functions incompatible with our runtime environment.
Hence, they could not be compiled without larger modifica-
tions. In total 4823 procedures were compiled.

6.1 Quantitative Analysis

The main factors influencing the speed of our algorithm are

• the length of the def-use chain; used in the for loop of
Algorithm 3.

• the number of basic blocks since it determines the size
of the bitsets Tv and Rv.

• the number of CFG edges since they govern the time
to precompute the Tv and Rv.

of Basic Blocks # of Uses per Variable

Benchmark Average Sum % ≤ 32 % ≤ 64 Maximum % ≤ 1 % ≤ 2 % ≤ 3 % ≤ 4

164.gzip 33.35 2735 69.51 85.36 51 65.64 86.38 92.81 95.94
175.vpr 34.45 7752 68.88 84.44 75 70.36 88.90 93.93 96.28
176.gcc 38.96 78666 72.85 86.03 422 73.99 87.81 92.42 94.84
181.mcf 20.31 528 84.61 100.00 46 66.91 83.50 89.33 94.46
186.crafty 69.28 7551 59.63 76.14 620 72.98 90.09 93.85 95.75
197.parser 23.60 7623 84.82 93.49 96 65.12 86.75 94.26 96.62
254.gap 32.89 28020 67.60 87.44 156 70.46 85.95 91.26 94.54
255.vortex 26.46 24425 77.57 90.68 254 65.99 90.80 95.02 96.97
256.bzip2 22.97 1700 78.37 91.89 36 69.89 89.89 94.47 96.17
300.twolf 56.97 10825 59.47 77.36 165 69.71 87.59 93.23 95.92

Total 35.21 169825 72.71 87.18 620 71.30 87.85 92.76 95.31

Table 1. Results of Quantitative Evaluation

Table 1 shows the results of the quantitative evaluation:
That is statistics about the number of basic blocks and the
number of uses per variable for each benchmark program.

The number of uses (i.e. the length of the def-use chain)
mainly governs the runtime of the liveness query. About
95% percent of all variables have less than five uses. Even
more, over 70% of all variables have only one use. However,
there are also cases in which variables have more than 600
uses.

The runtime of the precomputation is governed by the
number of edges in the procedure to compile. As CFGs are
sparse, the number of edges in a CFG depends linearly on
the number of nodes. On average there were 1.3 edges per
basic block with a total maximum of 1.9.

72.71% (87.18%) percent of the compiled procedures had
less than or equal to 32 (64) blocks. This means that the
bitsets Tv and Rv consume two or less machine words for
most CFG nodes. Finally, 99.58% had less than 512 blocks,
and the largest block count we encountered was 2240.

In total, the benchmarks contained 238427 edges of which 8701
were back edges. We encountered 60 edges whose back edge
target did not dominate its source and hence contributed to
irreducible control flow. Out of 4823 compiled functions, 7
contained irreducible control flow.

Discussion

The structural parameters of the benchmark programs
support our assumptions. The def-use chains are shorter
than five elements in more than 95% of all cases. That jus-
tifies our presumption that the def-use chain is very short
and iterating over it in the check is efficient in most cases.

Furthermore, calculating as well as storing the transitive
closure of the reduced graph is a feasible approach as the
compiled procedures have almost always less than 500 basic
blocks. In terms of memory consumption there is a point
where our algorithm needs more memory than the native
liveness algorithm, which uses an ordered array per basic
block to store live-in variables. This break-even point is
reached if the number of basic blocks is larger than the size
of such an array (measured in bits). Consider the ordered-
array approach on a 32-bit architecture: If a variable is rep-
resented by a pointer and one assumes an array length of 32
variables then our method needs less storage if the procedure
has less than 32 × 32 = 1024 blocks. Regarding the block
counts given above we can say that this is nearly almost the
case. However, for large block counts like 10,000 or more,
the quadratic behavior of the precomputation becomes an is-

sue, especially its memory consumption. Section 8 discusses
possible solutions to this problem.

Computing and storing the Tv sets is negligible as the
amount of back edges is fairly small (about 3.6% of all
edges). Hence, future implementations could use sorted ar-
rays instead of bitsets to save space in case of larger CFGs
and speed up the loop iteration (by abandoning bitset-

_next_set). Also, the fact that the vast majority of pro-
grams exhibit reducible control flow supports our approach.

6.2 Runtime Analysis

We collected our data during the SSA destruction phase
of LAO, which uses the third variant of the algorithm of
Sreedhar et al. [21]. This algorithm tests interference of cer-
tain SSA variables (results and arguments of φ-functions)
in order to make coalescing decisions. The interference test
employed was proposed by Budimlić et al. [7] and uses SSA
properties and liveness to determine if two variables inter-
fere. Basically, it decides whether one variable is live directly
after the instruction that defines the other one. This allows
for circumventing the construction of an interference graph.
We used the liveness queries of this algorithm to compare
our method with the liveness facility implemented in LAO,
which is described next.

The liveness analysis used in the LAO code generator is
based on a classic iterative solver whose worklist is a stack.
The stack is initialized with nodes that are pushed in CFG
postorder. Implementing the worklist by a simple stack was
shown to be effective for liveness analysis by Cooper et al. [8].
However, the distinguishing features of the LAO liveness
analysis implementation is that it does not rely on bit vectors
to implement sets of variables.

First, the universe of the variables to consider is collected
in a table prior to liveness analysis. While doing so, variables
are assigned dense indices. Second, the local liveness analy-
sis is performed using the sparse sets of Briggs & Torczon [5].
Third, the global liveness analysis relies on sets represented
as sorted dense arrays of pointers (to variables). For proce-
dures with many variables, this has proven to be far more
memory efficient than data-flow bit-vector implementations.
Testing set membership only requires a binary search, which
takes logarithmic time in the set cardinality. In case of SSA
destruction, liveness information is only needed for the φ-
related variables. This is exploited in LAO’s liveness analy-
sis (for SSA destruction) by ignoring non-φ-related variables
completely. Table 2 shows the results of the runtime exper-

iments. We ran LAO on the set of benchmark programs
mentioned above and measured

1. the time for constructing the data structures (columns
“Precomputation”). For our approach (“New”) that
is calculating the Tv and Rv. For the native liveness
(“Native”) this consists of computing for each block the
set of live variables using data-flow analysis.

2. the total time of all liveness queries (columns“Queries”).
For our method that is the running time of Algorithm 3
and for the native liveness this is the lookup of a vari-
able in the set of the corresponding block.

The numbers in the columns “Native” and “New” repre-
sent processor clock cycles that were taken by reading the
processor’s time stamp counter. The machine used for the
experiments was a Dell Latitude X300 notebook using a Pen-
tium M processor at 1.4 GHz and 640 MB of main mem-
ory running Ubuntu Linux 7.04. Hence, 1000 cycles cor-
respond to 714 nanoseconds. For each group, the column
“Spdup” gives the respective speedup. The column “Spdup”
in “Both” gives the speedup resulting from the sum of the
time spent in the precomputation and query part: # Proc.×
Avg. cycles per proc. + # Queries×Avg. cycles per query.

Discussion

First, consider the precomputation. Our precomputation
is about three times faster than the native liveness com-
putation. Note that the native precomputation is already
optimized for the SSA destruction pass by considering only
φ-related variables. We measured that, on average, the live-
sets computed by the native algorithm contained 3.16 ele-
ments. Our experiments show that its runtime is basically
bounded by the number of set insertions and not by the
number of data-flow iterations. Hence, a full liveness pre-
computation regarding all variables takes even longer: we
measured an average fill ratio of 18.52 elements per set and
an average precomputation time of 283403.5 which is 60%
higher as in SSA destruction and about 4.7 times slower
than our approach. Our precomputation is completely inde-
pendent of the number of variables since it solely depends
of the control-flow graph’s structure.

Second, consider the query time. As expected, a liveness
query in our approach is slower than a query in the na-
tive approach. A query in the native approach is an array
lookup using binary search. Even if we assume 32 elements
in such an array, the worst case query consists of 5 mem-
ory lookups on an array that is in the cache with a high
probability. In our approach, we have bitset lookups and
a traversal of the def-use chain that is not as cache-local
as an array. We measured that our query is on average
about 2.8 times slower than the set lookup of the native ap-
proach. Given the number of queries, we compensate this by
the faster precomputation. Considering all the benchmarks,
there were, on average, 5.19 queries per variable. However,
in the case of 186.crafty, there were 26.53 queries per vari-
able, which consumed more time than was gained by the
faster precomputation.

7. RELATED WORK

Liveness analysis has mostly been treated in the context
of data-flow analysis. Data-flow analysis goes back to the

1960s and is thus very well explored. Much research in iter-
ative data-flow analysis was dedicated to efficiently solve the
data-flow equations. There exist approaches for determin-
ing efficient node orderings, exploiting structural properties
of the program, and using more efficient data structures to
accelerate the solvers. We will not discuss this in further de-
tail as this is extensively covered in almost every available
compiler textbook. For example, [9] gives a good overview
of the seminal work in the area.

Gerlek et al. [13] use so-called λ-operators to collect up-
ward exposed uses at control-flow split points. Precisely, the
λ-operators are placed at the iterated dominance frontiers,
computed on the reverse CFG, of the set of uses of a vari-
able. These λ-operators and the other uses of variables are
chained together and liveness is efficiently computed on this
graph representation. The technique of Gerlek et al. can be
considered as a precursor of the live variable analysis based
on the Static Single Information (SSI) form [20]. In both
cases, insertion of pseudo-instructions guarantee that any
definition is post-dominated by a use.

The only liveness analysis we are aware of that relies on
SSA properties is given in [2]. Similarly to our work, the al-
gorithm uses the fact, that a variable can only be live inside
the dominance subtree of its definition. It then uses the def-
use chain to search all blocks lying on paths from the vari-
able’s definition to a use. The variable must be marked live
at each of these blocks. Since it uses the def-use chain, there
is no need to traverse the instructions inside a basic block.
Hence, the algorithm’s runtime corresponds exactly to the
number of set insertion operations. Furthermore, it can be
run on each variable separately. However, this method only
differs from data-flow approaches in how the analysis data
is computed and not how it is represented. Hence, it is as
vulnerable to program modifications as the data-flow ap-
proaches.

8. CONCLUSIONS AND OUTLOOK
We presented a novel approach to liveness checking for SSA-
form programs. In contrast to the existing data-flow based
techniques, our analysis data solely depends on the CFG’s
structure and exploits the properties of the SSA form. Hence,
adding, modifying, or removing an instruction does not in-
validate our precomputed data, in contrast to prior approa-
ches. This makes our approach especially attractive to com-
piler phases where keeping liveness information up to date is
considered too expensive. Although being of quadratic com-
plexity concerning the number of basic blocks, our bench-
marks show that for procedure sizes encountered in our bench-
mark it is at least three times faster than data-flow based
methods.

This acceleration of the precomputation of course has its
price: The actual liveness check is slower than an ordinary
set lookup. Hence, the performance of our approach strongly
depends on the number of queries. We experimentally show
that for the SSA destruction in LAO the number of queries
is sufficiently low to outperform the highly tuned, data-
flow based native liveness algorithm of LAO. As work in
progress, we verify the competitiveness of our approach in
other passes/optimizations, which exhibit a different query
behavior than SSA destruction.

Our technique uses structural properties of the CFG and
could take advantage of a precomputed loop nesting for-
est [19, 15]. In fact, our algorithm can be adapted to most

Precomputation Queries Both

Avg. cycles per proc. Avg. cycles per query

Benchmark # Proc. Native New Spdup # Queries Native New Spdup Spdup

164.gzip 82 174000.82 55054.62 3.12 90659 86.84 162.23 0.53 1.16
175.vpr 225 116963.18 54291.50 2.17 55670 85.71 179.38 0.48 1.41
176.gcc 2019 205923.64 67310.79 3.03 1109202 88.17 339.54 0.26 1.00
181.mcf 26 65544.73 35696.62 1.85 2369 84.09 190.37 0.44 1.39
186.crafty 109 437037.94 156418.57 2.78 858121 81.07 166.14 0.49 0.73
197.parser 323 85194.79 40392.45 2.13 38719 86.54 177.81 0.49 1.54
254.gap 852 191000.39 55515.27 3.45 245540 87.38 168.82 0.52 2.08
255.vortex 923 71444.18 42651.30 1.67 88554 85.09 187.21 0.45 1.32
256.bzip2 74 137544.10 40178.87 3.45 10100 95.00 184.86 0.51 2.32
300.twolf 190 446186.87 94197.44 4.76 184621 94.89 193.81 0.49 1.92

Total 4823 177655.50 60375.69 2.94 2683555 86.09 241.06 0.36 1.16

Table 2. Results of the Runtime Experiments

loop nesting forest definitions. For the sake of brevity and
generality, we did not elaborate this further. Furthermore,
due to its quadratic nature, memory consumption becomes
an issue for procedures with some thousand blocks. Study-
ing more memory efficient ways of storing the transitive clo-
sure (e.g. see [1]) is subject to further investigation.

References
[1] Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger

Nasr. Efficient Implementation of Lattice Operations. ACM
Transactions on Programming Languages and Systems,
11(1):115–146, 1989.

[2] Andrew W. Appel and Jens Palsberg. Modern Compiler Im-
plementation in Java. Cambridge University Press, second
edition, 2002.

[3] Florent Bouchez, Alain Darte, Christophe Guillon, and
Fabrice Rastello. Register Allocation: What does the NP-
Completeness Proof of Chaitin et al. Really Prove? In The
19th International Workshop on Languages and Compilers
for Parallel Computing (LCPC’06), November 2-4, 2006,
New Orleans, Louisiana, LNCS. Springer Verlag, 2006.

[4] Preston Briggs, Keith D.Cooper, Timothy J. Harvey, and
L. Taylor Simpson. Practical Improvements to the Construc-
tion and Destruction of Static Single Assignment Form. Soft-
ware: Practice and Experience, 28(8):859–881, July 1998.

[5] Preston Briggs and Linda Torczon. An Efficient Represen-
tation for Sparse Sets. ACM Letters on Programming Lan-
guages and Systems, 2(1-4):59–69, 1993.

[6] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sar-
rafzadeh. Polynomial Time Graph Coloring Register Alloca-
tion. In 14th International Workshop on Logic and Synthe-
sis. ACM Press, 2005.

[7] Zoran Budimlić, Keith D. Cooper, Timothy J. Harvey, Ken
Kennedy, Timothy S. Oberg, and Steven W. Reeves. Fast
Copy Coalescing and Live-Range Identification. In Proceed-
ings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation, pages 25–32.
ACM Press, 2002.

[8] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy.
Iterative Data-Flow Analysis, Revisited. Technical Report
TR04-100, Rice University, 2002.

[9] Keith D. Cooper and Linda Torczon. Engineering a Com-
piler. Morgan Kaufmann, 2004.

[10] Marco Cornero, Roberto Costa, Ricardo Fernandez Pascual,
Andrea Ornstein, and Erven Rohou. An Experimental En-
vironment Validating the Suitability of CLI as an Effective
Deployment Format for Embedded Systems. In International
Conference on High Performance Embedded Architectures &
Compilers, HiPEAC 2008, To be published in Lecture Notes
In Computer Science, 2008.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadek. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transac-
tions on Programming Languages and Systems, 13(4):451–
490, October 1991.

[12] B. Dupont de Dinechin, F. de Ferri, C. Guillon, and A. Stout-
chinin. Code Generator Optimizations for the ST120 DSP-
MCU Core. In CASES ’00: Proceedings of the 2000 interna-
tional conference on Compilers, architecture, and synthesis
for embedded systems, pages 93–102, New York, NY, USA,
2008. ACM.

[13] M. Gerlek, M. Wolfe, and E. Stoltz. A Reference Chain Ap-
proach for Live Variables. Technical Report CSE 94-029,
Oregon Graduate Institute of Science & Technology, 1994.

[14] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register
Allocation for Programs in SSA form. In Andreas Zeller and
Alan Mycroft, editors, Compiler Construction 2006, volume
3923. Springer, March 2006.

[15] Paul Havlak. Nesting of Reducible and Irreducible Loops.
ACM Transactions on Programming Languages and Sys-
tems, 19(4):557–567, 1997.

[16] M. S. Hecht and J. D. Ullman. Characterizations of Re-
ducible Flow Graphs. J. ACM, 21(3):367–375, 1974.

[17] Allen Leung and Lal George. Static Single Assignment Form
for Machine Code. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language De-
sign and Implementation, pages 204–214, New York, NY,
USA, 1999. ACM Press.

[18] Fernando Magno Quintao Pereira and Jens Palsberg. Regis-
ter Allocation via Coloring of Chordal Graphs. In Proceed-
ings of APLAS’05, volume 3780 of LNCS, pages 315–329.
Springer, November 2005.

[19] G. Ramalingam. On Loops, Dominators, and Dominance
Frontier. In PLDI ’00: Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Im-
plementation, pages 233–241, New York, NY, USA, 2000.
ACM Press.

[20] Jeremy Singer. Static Program Analysis Based on Virtual
Register Renaming. Technical Report UCAM-CL-TR-660,
University of Cambridge, Computer Laboratory, February
2006.

[21] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies,
and Vatsa Santhanam. Translating Out of Static Single As-
signment Form. In SAS ’99: Proceedings of the 6th Interna-
tional Symposium on Static Analysis, pages 194–210, Lon-
don, UK, 1999. Springer-Verlag.

[22] Robert Tarjan. Depth-First Search and Linear Graph Algo-
rithms. SIAM Journal on Computing, 1(2):146–160, 1972.

