Persistence Analysis Reloaded

Christoph Cullmann
Department of Computer Science
Saarland University

AbsInt Angewandte Informatik GmbH

July 2009

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

. . SAARLAND
Motivation UNIVERSIT
COMPUTER SCIENCE

How to do precise cache analysis for this loop?

void alternatingLoop (int maxRounds)

{
while (int i = 0; i < maxRounds; ++i) {
if (someThingUnknown ()) {
accessA ();

} else {
accessB ();
}
}
}

July 2009 2/50

SAARLAND

Cache & Analysis Parameters —

COMPUTER SCIENCE

Cache Parameters

m LRU Replacement Policy
B 2-way associative
Analysis Parameters

m Analysing only one set, as the sets are independent.
m accessA will read cache line a, accessB cache line b.
m a and b map to same set, the analysed one.

Christoph Cullmann Persistence Analysis Reloaded July 2009 3/50

SAARLAND

Simplified Control Flow for Example Loop —_—

COMPUTER SCIENCE

last iteration

loop head

access a access b
~ Ve

loop join

next iteration

Christoph Cullmann Persistence Analysis Reloaded

SAARLAND

First Idea: Use Must Analysis UNIVERS ITY

COMPUTER SCIENCE

Must Analysis Basics

m Under-approximation of cache contents.
m Maps cache lines to their maximal age in the cache.
m Allows to classify sure-hits.

Christoph Cullmann Persistence Analysis Reloaded July 2009 5/50

SAARLAND

Must Analysis Theory UNIVERSITY

COMPUTER SCIENCE

Update Function

h— {x}
/,‘r—>m(/,'_1)|i:2..h—1
In = m(lh—1) O (M(Ip) \ {x})
Umust(m, X) = i — m(l,) ‘ i=h+1.A

if 3l 2 x € m(ly)

h — {x}

) otherwise
i—m(i_4)]i=2..A

Christoph Cullmann Persistence Analysis Reloaded July 2009 6/50

SAARLAND

Must Analysis Theory UNIVERSITY

COMPUTER SCIENCE

Join Function

/ _ .
Jmust(m,m'’) = lj— Ax € m'(Ip) A i = max(a, b)}

Christoph Cullmann Persistence Analysis Reloaded

Must Analysis applied to Example

last iteration

must
1 0
2 [
must loop head must
1 [} 1 [1]
2 0 2 0
access a access b
must . must
loop join
T {a ol T {5
2 [1] 2 0
must
1 0
2 0

next iteration

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Christoph Cullmann

Persistence Analysis Reloaded

SAARLAND

Results of Must Analysis SN

COMPUTER SCIENCE

Results

m No accesses to cache line a or b classified as sure-hits.
m Therefore: Later Analysis must assume both miss and hit case.

Christoph Cullmann Persistence Analysis Reloaded July 2009 9/50

SAARLAND

Second Idea: Use May Analysis UNIVERSITY

COMPUTER SCIENCE

May Analysis Basics

m Over-approximation of cache contents.
m Maps cache lines to their minimal age in the cache.
m Allows to classify sure-misses.

Christoph Cullmann Persistence Analysis Reloaded July 2009 10/50

SAARLAND

May Analysis Theory UNIVERSITY

COMPUTER SCIENCE

Update Function

(l — {X}

/,-»—>m(l,-_1) ’ i=2..h

It = m(lp1) U (m(lp) \ {x})
Umay(m,x) = /,|—>m(/,)]/:h—|—2A

if 3l - x € m(ly)

h — {x}

) otherwise
/,' — m(/,-_1) ’ i=2.. A

Christoph Cullmann Persistence Analysis Reloaded July 2009 11/50

SAARLAND

May Analysis Theory UNIVERSITY

COMPUTER SCIENCE

Join Function

{x | 3a, lIp : x € m(la)
Ax € m'(lp) Ai=min(a, b)}
U {x|xem(i)A Bla: x € m(ly)}
U {x|xem()N Ala: x € m(la)}

Jmay(m, ml) = /,‘ —

Christoph Cullmann Persistence Analysis Reloaded July 2009 12/50

Example - May Analysis, 1st Iteration

last iteration

may
1 0
210
access a
may
1| {a}
210

may
1 0
2 [
loop head may
1 0
2 0
access b
loop ioi may
oop join : 57
2 0
may
1| {ab}
2 [

next iteration

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Christoph Cullmann

Persistence Analysis Reloaded

Example - May Analysis, Fixpoint

last iteration

may

-

{a, b}
[

access a

~

may
1 {a, b}
2 []
loop head may
1| {ab}
2 0
access b
I . ma)
oop join . G
2 {a
may
1| {ab}
2 0

next iteration

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Christoph Cullmann

Persistence Analysis Reloaded

SAARLAND

Results of May Analysis UNIVERS TV

COMPUTER SCIENCE

Results

m No accesses to cache line a or b classified as sure-misses.

m Therefore: Same as after must analysis, later Analysis must
assume both miss and hit case.

Christoph Cullmann Persistence Analysis Reloaded July 2009 15/50

SAARLAND

Last Escape: Using Persistence Analysis —

COMPUTER SCIENCE

Basic ldea

m Persistence analysis tries to calculate if a cache line can no be
evicted in a given scope.

m Using this persistence classification, only the first access to such
a classified cache line will be eventually a miss, all following a hit.

Intuition for Example

m Natural scope: The loop itself.

m Only 2 cache lines of the analysed set read.
m The associativity is 2.

m Both cache lines should be persistent!

Christoph Cullmann Persistence Analysis Reloaded July 2009 16 /50

SAARLAND

Persistence Analysis of Ferdinand —

COMPUTER SCIENCE

Basics of the Analysis

m Based on must analysis.
m Uses same aging as must analysis.

m Union with maximization of ages instead of intersection as join
function.

m Introduction of an additional age, to keep track of lines possibly
evicted.

Christoph Cullmann Persistence Analysis Reloaded July 2009 17 /50

SAARLAND

Persistence Analysis Theory —

COMPUTER SCIENCE
Update Function

h— {x}

I,-.—>m(/,-_1) | i=2..h-1

In = m(lh—1) U (M) \ {x}) if 3he {1,...,A} : x € m(ly)
—m()|i=h+1.A

Upers(m, x) = las1 — m(lasq1)

h— {X}
i m(i—)|i=2.A otherwise
lav1 = m(la) U (m(lar1) \ {x})

Christoph Cullmann Persistence Analysis Reloaded July 2009 18/50

SAARLAND

Persistence Analysis Theory —

COMPUTER SCIENCE

Join Function

{x | 3a, lIp : x € m(la)
Ax € m'(lp) A i =max(a, b)}
U {x|xem(i)n Ala: x € m(l5)}
U {x|xem(i)A Bla:x e m(ly)}

Jpers(mam/) = i

Christoph Cullmann Persistence Analysis Reloaded July 2009 19/50

Example - Persistence Analysis, 1st lteration

Christoph Cullmann

last iteration

persistence
1 0
2 0
3 0
persistence persistence
110 loop head 1
2 0 2 []
310 / \3‘ 0
access a access b
persistence\‘ persistence
1 {a} 1 {b}
2 [1) loop join 2 [}
3 0 3 []
persistence
1 {a, b}
2 0
3 0

next iteration

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Example - Persistence Analysis, 2nd Iteration

Christoph Cullmann

last iteration

persistence
1 {a, b}
2 0
3 0
persistence persistence
1| {ab} loop head 1 [{ab}
2 0 2 []
310 / \3‘ 0
access a access b
persistence\‘ persistence
1 al 1 b}
2 b} loop join 2 at
3 3
persistence
1 []
2 | {a b}
3 0

next iteration

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Example - Persistence Analysis, Fixpoint

Christoph Cullmann

last iteration

persistence
1 0
2 | {ab}
3 0
persistence persistence
110 loop head 1
2 | {a, b} 2 | {ab}
310 / \3‘ 0
access a access b
persistence\‘ persistence
1 al 1 b}
2 b} loop join 2 at
3 3
persistence
1 0
2 | {a b}
3 0

next iteration

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

SAARLAND

Results of Persistence Analysis UNIVERSITY

I —
COMPUTER SCIENCE

Results

m Both cache line a and cache line b can not be evicted inside the
loop (they never get the age 3).

m Both accesses can be classified as persistent.

Then, where is the problem?

Problem with analysis discovered by Hugues Cassé.

Christoph Cullmann Persistence Analysis Reloaded July 2009 23/50

SAARLAND
Problem found by Hugues Cassé UNIVERSITY

I —
COMPUTER SCIENCE

Addition of third possibility to our example:

void alternatingLoop (int maxRounds)

{
while (int i = 0; i < maxRounds; ++i) ({
switch (someThingUnknown ()) {
case a:
accessA (); break;
case b:
accessB (); break;
default:
accessC (); break;
}
}
}

Christoph Cullmann Persistence Analysis Reloaded

July 2009 24/50

Problem Hugues Cassé,

Christoph Cullmann

access

's

SAARLAND

1st lteration ey

COMPUTER SCIENCE

persistence
1] {a}
2 0
3 0

persistence
1
2 [
3 []
a l access ¢
access b \
persistence
T [{ch
2 0
_ 3 0
persistence
1 {b}
2 [
3 []
loop join
persistence
1 {a, b, c}
2 [
3 [

Persistence Analysis Reloaded

Problem Hugues Cassé, 2nd lteration

Christoph Cullmann

access a

's

persistence
1 at
2 b, c}
3

N

persistence
1 c}
2 a, b}
3

persistence
1| {abc}
2 [
3 []
l access ¢
access b
persistence
1 b}
2 a,c}
3
loop join
persistence
1
2 {a, b, c}
3 [

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Problem Hugues Cassé, Fixpoint

Christoph Cullmann

access a

's

persistence
1 at
2 b, c}
3

persistence
1
2 {a, b, c}
3 []
l access ¢
access b \
persistence
1 c}
2 a, b}
_ 3
persistence
1 b}
2 a,c}
3
loop join
persistence
1
2 {a, b, c}
3 0

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

SAARLAND

Results of Persistence Analysis UNIVERSITY

I —
COMPUTER SCIENCE

Problematic:

m All three cache lines a, b and ¢ can not be evicted inside the loop
(they never get the age 3)

m All three accesses can be classified as persistent

m This is wrong, as three elements don't fit in the 2 element large
set!

Where is the error?

m Aging is not correct, persistence can’t use the same aging as
must analysis!

m Reason: persistence analysis is no under-approximation of the
cache, no guarantee to be in the cache

Christoph Cullmann Persistence Analysis Reloaded July 2009 28/50

Problem Hugues Cassé, Aging Error

Christoph Cullmann

access a

's

persistence
1 a}
2 b,c}
3

persistence
1
2 {a, b, c}
3 []
l access ¢
access b \
persistence
1 c}
2 a, b}
_ 3
persistence
1 b}
2 a,c}
3
loop join
persistence
1
2 {a, b, c}
3 0

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

SAARLAND

First Possible Solution EAE

COMPUTER SCIENCE

Fixing the Aging

m On access to any element, all other elements will age. This is
needed, as we need maximal ages.

m This fixes the problem shown by Cassé
m But: this does not even allow the first example to work

Christoph Cullmann Persistence Analysis Reloaded July 2009 30/50

Example - New Aging, 1st lteration

Christoph Cullmann

last iteration

persistence
1 0
2 0
3 0
persistence persistence
110 loop head 1
2 0 2 []
310 / \3‘ 0
access a access b
persistence\‘ persistence
1 {a} 1 {b}
2 [1) loop join 2 [}
3 0 3 []
persistence
1 {a, b}
2 0
3 0

next iteration

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Example - New Aging, 2nd lteration

last iteration

persistence
1 {a, b}
2 0
3 0
persistence persistence
1| {ab} loop head 1 [{ab}
2 0 2 []
310 / \3‘ 0
access a access b
persistence\‘ persistence
1 al 1 b}
2 b} loop join 2 at
3 3
persistence
1
2 {a, b}
3 0

next iteration

Christoph Cullmann Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Example - New Aging, 3rd lteration

last iteration

persistence
1 0
2 {a, b}
3 0
persistence persistence
110 loop head 1
2 | {a, b} 2 | {ab}
310 / \3‘ 0
access a access b
persistence\‘ persistence
1 {a} 1 {b}
2 [1) loop join 2 [}
3 | {b} 3 | {a}
persistence
1 []
2 0
3 {a, b}

next iteration

Christoph Cullmann Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Example - New Aging, Fixpoint

persistence

[

last iteration

persistence
1 0
3 0
2 | {ab}
persistence
loop head 1

0 3
2 {a b} / \i 1a, b}

0

access a access b
persistence\‘ persistence
1| {a} 1] {b}
2 [1] loop join 2 0
3 | {b} 3 | {a}
persistence
1
2 [0
3 {a, b}

next iteration

Christoph Cullmann Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

SAARLAND

Second Possible Solution oNvERSITY

COMPUTER SCIENCE

Introducing New Analysis

m Learn out of the error of the old analysis.
m Not must-analysis based, but may-analysis based.

Christoph Cullmann Persistence Analysis Reloaded July 2009 35/50

SAARLAND

New Analysis - Introduction o

COMPUTER SCIENCE

Basics

m Parallel may- and may-max-analysis.
may-max (may) = may with maximal ages, additional age for
possibly evicted elements.

m Using of the may-analysis to bound the number of elements in
cache.

m Use of the may-max-analysis to calculate the possible evictions.

m Important: Eviction only possible, if the cache is full.
This works only for LRU!

Christoph Cullmann Persistence Analysis Reloaded July 2009 36 /50

SAARLAND

New Analysis Theory UNIVERSITY

COMPUTER SCIENCE

Update Function

Upefs((mv ﬁ?),X) = (UWEY(m7X)7 Urﬁ?y(mv va))
h — {x}
= mi—)\{x}|i=2.A if mayevict(m, x)

lay1 — (m(/A+1)) m(/A)) \ {X}
Usgy(M,m, x) = i o
= mi—)\{x}|i=2..A-1
la = (M(la) U M(la — 1))\ {x}
las1 — m(IA+1) \ {X}

otherwise

mayevict(m,x) = ({y |y #xA3li:yem(l)} > A)

Christoph Cullmann Persistence Analysis Reloaded July 2009 37/50

SAARLAND

New Analysis Theory UNIVERSITY

COMPUTER SCIENCE

Join Function

Jpers((m, i), (m',) = (Jmay(m,), Iz (i, 7))

{x| Fla,Ip : x € M(lz) A x € M (Ip)
A =max(a, b)}
U {x|xemi)A Bla: x € M(l3)}
U {x|xem()N Aly: x € m(la)}

J=

may

(m,m) = |~

li=1.A+1

Christoph Cullmann Persistence Analysis Reloaded July 2009 38/50

SAARLAND

Example - New Analysis, 1st lteration —

COMPUTER SCIENCE
last iteration

may maymax
1 0 1 [1]
210 2|10
3]0
may maymax may maymax
1 0 1 0 loop head 1 [1] 1 []
2 [1) 2 [1] 2 0 2 []
3]0 3]0
access a access b
may Maymax may maymax
T {a; | 1 | {a} T {b} | 1 | {b}
2 [1) 2 0 loop join 2 0 2 [1]
310 3 [0
may maymax
T {aby | 1| {ab} |
210 2 | 0
310

next iteration

Christoph Cullmann Persistence Analysis Reloaded

SAARLAND

Example - New Analysis, 2nd lteration —

COMPUTER SCIENCE
last iteration

may maymax
1 {a, b} 1 {a, b}
210 2 | 0
310
may maymax may maymax
1 {a, b} 1 {a, b} loop head 1 {a, b} 1 {a, b}
2 [0 210 2 | 0 210
310 310
access a access b
ma maymax ma) maymax
1 {a 1 a 1 {b 1 b
2 {b 2 b loop join 2 {a 2 a
3 3
may maymax
1 {a, b} 1 0
210 2 {a, b}
310

next iteration

Christoph Cullmann Persistence Analysis Reloaded

. . . SAARLAND
Example - New Analysis, Fixpoint AL
last iteration

may Maymax
T {ab} | 1|0
210 2 {a, b}
3]0
may maymax may maymax
1 {a, b} 1 0 loop head 1 {a, b} 1 0
210 2 | {ab} 20 2 | {a b}
3]0 310
access a access b
ma maymax ma) maymax
1 {a 1 a 1 {b 1 b
2 {b 2 b loop join 2 {a 2 a
3 3
may maymax
1 {a, b} 1 0
2 [0 2 {a, b}
310

next iteration

Christoph Cullmann Persistence Analysis Reloaded

Problem Hugues Cassé, 1st Iteration

may maymax
1 [] 1 0
2 [] 2 0
3 0
access a access ¢
/ access b \
may maymax may maymax
1] {ap [1] {a} 1] {e} [1] {c}
2 [] 2 [] 2 [1] 2 0
3 0 3 0
may maymax
11 {b} [1] {b}
2 [] 2 [
3 0
may maymax
1 {a, b, c} 1 {a, b, c}
2 [0 2 | 0
3 [0

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Christoph Cullmann

Persistence Analysis Reloaded

Problem Hugues Cassé, 2nd lteration

may maymax
1 {a, b, c} 1 {a, b, c}
2 0 2 0
3 0

access a

/

may
1 {a}
2 {b, c}

Wl N

Christoph Cullmann

N

access ¢
/ access b \
maymax may maymax
a} 1 {c} 1 c}
b, c} 2 {a, b} 2 a, b}
3
may maymax
1 {b} 1 b}
2 {a, c} 2 a,c}
3
may maymax
1 {a, b, c} 1 []
20 2 | {abc}
310

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Problem Hugues Cassé, 3rd lteration

may
1 {a}
2 {b, c}

wnof =

Christoph Cullmann

may maymax
1 {a, b, c} 1 []
210 2 | {a,b,c}
310
access a access ¢
/ access b \
maymax may maymax
{a} 1| {c} {c}
[] 2 | {ab} 0
{b, c} {a b}
may maymax
1 {b} 1 {b}
2 [{act [2] 0
3 {a, c}
may maymax
1 {a, b, c} 1
210 2 | 0
3 {a, b, c}

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Problem Hugues Cassé, Fixpoint

may
1 {a}
2 {b, c}

Wl N

Christoph Cullmann

may maymax
1 {a, b, c} 1 []
210 2 10
3 {a, b, c}
access a access ¢
/ access b \
maymax may maymax
{a} 1| {c} 1] {c}
[] 2 | {ab} [2] 0
{b,c} 3 | {ab}
may maymax
1 | {b} 1| {b}
2 [{act [2] 0
3 {a, c}
may maymax
1 {a, b, c} 1
2 0 2 | 0
3 {a, b, c}

Persistence Analysis Reloaded

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

SAARLAND

Summary EAE

COMPUTER SCIENCE

New Analysis Works

m |t allows successful persistence analysis for example.
m It solves the problem of Hugues Cassé.

Christoph Cullmann Persistence Analysis Reloaded July 2009 46 /50

SAARLAND

Outlook ANAND

COMPUTER SCIENCE

Future Work: Evaluation

m Analysis works for constructed examples.

m What is the gain in precision of the WCET estimate for real
software?

m Research:

» Evaluation on benchmark programs and real industry tasks.
» Evaluation on current processors:
MPC755 or MPC7448 (partial locked cache), MPC603e

Christoph Cullmann Persistence Analysis Reloaded July 2009 47 /50

SAARLAND

Outlook ANAND

COMPUTER SCIENCE

Future Work: Unsharp Accesses

m Extension to allow the handling of unsharp accesses.

m Draft implementation using one place holder element already
works.

m Research:

» How does this extension work out on real software (data caches)?
» Would it make sense, to introduce different place holders for
different accesses?

Christoph Cullmann Persistence Analysis Reloaded July 2009 48/50

SAARLAND

Outlook ANAND

COMPUTER SCIENCE

Future Work: Persistence Scopes

m Persistence uses scopes, e.g., the loop in the example.
m Improve: Allow nested persistence scopes.

(As shown by Clément Ballabriga and Hugues Cassé)
m Research:

» How much more precision do nested scopes allow?
» How to chose good persistence scopes automatically?
» Are there optimal scopes?

Christoph Cullmann Persistence Analysis Reloaded July 2009 49/50

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Questions?

Christoph Cullmann Persistence Analysis Reloaded

