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Abstract. Abstract interpretation is one of the main verification tech-
nologies besides model checking and deductive verification.
Abstract interpretation has a rich theory of abstraction and strong sup-
port for the construction of abstract domains. It allows to express a pre-
cise relation to the (concrete) semantics of the programming language
inducing a clear relation between the results of an abstract interpretation
and the properties of the analyzed program. It permits trading efficiency
against precision and offers means to enforce termination where this is
not guaranteed.
We explain abstract interpretation using examples from a particular ap-
plication domain: the determination of bounds on the execution times of
programs. These bounds are used to show reliably that hard real-time
systems satisfy their timing constraints.
The application domain requires a number of static analyses and domains
with different characteristics. Most domains exhibit Galois connections,
a few do not. Some analyses require widening to leap infinite ascending
chains and ensure termination.

1 Introduction

Abstract interpretation, the theory behind static program analysis, has its roots
in the compiler domain. From early on, compilers used static analysis to compute
invariants at program points, which would imply the applicability conditions of
optimizing transformations. First strong theoretical results about static program
analysis were obtained in the 70s [1, 2]. Exactly 30 years ago, Patrick Cousot
submitted his PhD thesis [3], which contained the very rich theory of abstract
interpretation and new static program analyses. He showed that all static analy-
ses were abstractions of a suitable concrete semantics and hereby opened the way
to analyses that could be proved correct or were even correct by construction.

⋆ Work reported herein was partially supported by the European IST Project
DAEDALUS, Validation of Critical Software by Static Analysis and Abstract Test-
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Verification and Analysis of Complex Systems) of the Deutsche Forschungsgemein-
schaft, the European Networks of Excellence ARTIST2 and ARTIST DESIGN.



Since then, static program analysis has left the compiler domain and has
become a verification method in its own right providing means to automatically
prove safety properties of programs. Among the most spectacular applications of
static program analysis to real systems probably are the analysis of the reasons
for the failure of the Ariane5 rocket [4], the proof of the absence of run-time er-
rors in safety-critical avionics code in the ASTRÉE project [5], and our method
to determine reliable and precise execution-time bounds for hard real-time sys-
tems [6, 7]. Today, static analysis tools based on abstract interpretation [8–12] are
widely used in industry and abstract interpretation continues to make inroads
into new application domains [13–15].

2 Timing Analysis - the Application Domain

Hard real-time systems are subject to stringent timing constraints which are
dictated by the surrounding physical environment. We are concerned with the
problem of guaranteeing that all the timing constraints of tasks when executed
on a given processor architecture will be met (“timing validation”).

Systems show a variability of execution times depending on

the input data: this has always been so and will remain so as it is a property
of the algorithm,

the initial execution state: this is caused by modern architectural features
such as caches, pipelines, and speculation, and

interference from the environment: preemptions and interrupts.

The unit-time (executing an instruction always takes exactly one time unit) or
constant-time abstraction used in many approaches to timing validation is thus
rendered obsolete by the advent of modern processors.

In general, the state space of input data and initial states is too large to
exhaustively explore all possible executions and so determine the exact worst-
case and best-case execution times. Some abstraction of the execution platform
is necessary to make a timing analysis of the system feasible. These abstractions
inevitably lose information, and yet must guarantee upper bounds for worst-case
and lower bounds for best-case execution time, respectively.

The alternative to exhaustive end-to-end measurement, which was just ar-
gued to be infeasible, and non-exhaustive measurement, which is unsound in
general because it may underestimate, will be explained in this paper. It con-
sists in the computation of upper (and possibly lower) bounds on the execution
times of instructions or basic blocks and the determination of a worst-case path
through the program. However, the variability of execution times also appears
on the instruction level, even on the level of individual memory accesses and
arithmetic operations, but the problem to bound execution times is easier to
solve for instructions than for whole programs.

We can look at the execution times of an instruction as an interval, from the
best case, e.g. all memory accesses hit the cache, all needed pipeline units are



free, no branch misprediction occurs, etc., to the worst case, where memory ac-
cesses miss the cache, pipeline units are occupied, buffers to fetch from are empty
and buffers to write to are full, etc. Relative to the best case, we will call any
increase in execution time during an instruction’s execution a timing accident
and the number of cycles by which it increases the execution time as compared
to the fastest time the timing penalty for this accident. Timing penalties for an
instruction can add up to several hundred processor cycles. Whether the exe-
cution of an instruction encounters a timing accident depends on the execution
state, e.g., the contents of the cache(s), the occupancy of other resources, and
thus on the execution history. It is therefore obvious that the attempt to pre-
dict or exclude timing accidents needs information about the execution history.
Excluding timing accidents means decreasing the upper bounds.

The computation of worst-case bounds for a program is realized by first em-
ploying an abstract processor model to compute a cycle-level abstract semantics
of the program and, in a second phase, mapping resulting time bounds for pro-
gram portions to an Integer Linear Program (ILP) whose optimal solution yields
the final bound. This tool architecture has been successfully used to determine
precise upper bounds on the execution times of real-time programs running on
processors used in embedded systems [16, 17, 6, 7, 18]. A commercially available
tool, aiT by AbsInt, cf. http://www.absint.de/wcet.htm, was implemented
and is used in the aeronautics and automotive industries.

In this tutorial, we deal with the more compute-intensive first phase. It has
the following three constituents, which we will treat in more detail later:

1. Value analysis attempts to compute information about data accesses and
control flow, in particular it tries to identify infeasible paths, syntactically
possible paths that will never be taken because of contradictory conditions.

2. Cache-behavior prediction determines a safe and concise approximation of
the contents of caches in order to classify memory accesses as definite cache
hits or misses.

3. Pipeline-behavior prediction analyzes how instructions pass through the
pipeline taking cache-hit or miss information into account. The cache-miss
penalty is assumed for all cases where a cache hit cannot be guaranteed.
At the end of simulating one instruction, a certain set of final states has been
reached. The pipeline analysis starts the analysis of the next instruction in
all those states.

Most powerful microprocessors have so-called timing anomalies. These are
counter-intuitive influences of the (local) execution time of one instruction on
the (global) execution time of the whole program. The interaction of several
processor features can cause a locally faster execution of an instruction to lead to
a globally longer execution time of the whole program. For example, a cache miss
contributes the cache-miss penalty to the execution time of a program. It was,
however, observed for the MCF 5307 [18] that a cache miss may actually speed
up program execution if it prevents a costly branch misprediction. The existence
of timing anomalies forces the analysis to consider a rather large search space
since it has to follow not only the local worst-case transitions in the architecture.



3 Abstract Interpretation

This section describes crucial program analyses in the context of timing vali-
dation. In Subsection 3.1, we introduce the theoretical foundations before we
describe constant propagation in 3.2, interval analysis in 3.3, cache analysis in
3.4 and pipeline analysis in 3.5.

3.1 The Theory

Program. A program is represented by a control flow graph which consists of a
set of program points V , an initial location vin (models program entry), and a
set of labeled control flow edges E ⊆ V ×Op×V (the elements of Op model the
operation that is executed when the edge is taken).

A program semantics consists of a (possibly infinite) set S of program states,
a set of initial states S0 ⊆ S and a semantics function J.K : Op → (S → S) that
assigns to each operation and thus to each control flow edge, a transfer function
modeling its effect on the current program state.

Concerning the operations and the semantics, we observe that the execution-
time bounds of a program cannot be determined from the source code of a
high-level language like C: executable code has to be analyzed.

For readability we employ an imperative toy language rather than an as-
sembly language to explain the first two example analyses. We will only regard
assignment statements, x ← e and the labels of the two outgoing edges of con-
ditionals, true(e) and false(e), for a condition e. As a semantic domain, it uses
states assigning integer values to variables, ρ : Vars → Z. A statement op trans-
forms the state ρ. The semantics of the operations of the toy language is defined
by:

Jtrue (e)K ρ = ρ if JeK ρ = tt

Jfalse (e)K ρ = ρ if JeK ρ = ff

Jx← eK ρ = ρ⊕ {x 7→ JeK ρ}

Compared to our toy language, executables have a different concept of “vari-
ables” as they employ registers defined in the instruction set architecture (ISA).
Note that the ISA is still somewhat machine independent, e.g. the PowerPC ar-
chitecture has many implementations for which the same value analysis can be
used. Machine-dependent semantics for cache and pipeline behavior prediction
are discussed in Subsection 3.4 and Subsection 3.5, respectively.

Collecting Semantics. The collecting semantics of a program assigns to each
program point the set of states that may occur at it during some execution.
The collecting semantics is expressible as the fixed point of a set of recursive
equations and is, in general, not computable and, even in the finite-state case,
not efficiently computable. To this end, the program analyses presented here
compute a safe over-approximation of the collecting semantics of a program by
computing a fixed point in a simpler domain.



The collecting semantics S : V → 2S is defined by the least fixpoint lfp(F ) =
F ∗(λv.∅) of the functional F : (V → 2S)→ (V → 2S):

F (f)(v′) =







S0 if v′ = vin
⋃

(v,op,v′)∈E

JopK(f(v)) otherwise .

Program Analysis. A program analysis A = (D, J.K
♯
) consists of an abstract

domain D and an abstract semantics J.K
♯
.

An abstract domain D = (S, A, β, γ) is defined by a complete semi-lattice
A = (A,⊑,

⊔

,⊥,⊤), a representation function β : S → A, mapping concrete
to abstract states, and a concretization γ : A → 2S , mapping abstract states
to the set of concrete states they represent. Concretization and representation
function are required to be montone functions with respect to set inclusion and
⊑, respectively, and must be consistent to each other, i.e. the representation of a
concrete state s must concretize to a set of states containing that concrete state,
i.e. s ∈ γ(β(s)).

We define an abstraction function α : 2S → A by α(S′) =
⊔

{β(s) | s ∈ S′}.
Given a lattice and a concretization, there may be a plethora of admissible
representation functions with varying precision that lead to a domain, e.g. one
could map some or all values to ⊤. To formalize the notion of optimal precision at
the level of the domain, the concept of a Galois connection was introduced. If the
concretization and the abstraction fulfill the condition α(X) ⊑ a ⇔ X ⊆ γ(a),
we shall call the pair (α, γ) a Galois connection.

The abstract semantics J.K
♯

: Op → (A→ A) assigns abstract transfer func-

tions JopK
♯
: A→ A to statements. We impose two requirements, first, the trans-

fer functions are monotone with respect to ⊑ and, second, they approximate (or

even equal) the best abstract transfer function JopK♯
best(a) = α(JopK(γ(a))), i.e.

JopK
♯
best ⊑ JopK

♯
(or JopK

♯
= JopK

♯
best).

The program analysis problem is to compute invariants S
♯ : V → A (in terms

of the abstract domain) for all program points v such that S(v) ⊆ γ(S♯(v)).
This is solved by computing the fixpoint lfp(F ♯) = F ♯∗(λv.⊥) of the functional
F ♯ : (V → A)→ (V → A):

F ♯(f)(v′) =







l0 if v′ = vin
⊔

(v,op,v′)∈E

JopK
♯
(f(v)) otherwise

where the initial abstract state is chosen such that α(S0) ⊑ l0.

Termination. The transfer functions are required to be monotone, so that in each
fixpoint iteration the values at the program points do not decrease with respect
to ⊑. Nontermination can only occur if the lattice exhibits infinite ascending
chains, i.e. sequences a1, a2, a3, . . . of distinct elements with increasing order
a1 ⊑ a2 ⊑ a3 ⊑ . . . . Then widening is used [19, 20] to enforce termination of
fixpoint iteration. A widening operator accumulates (monotonely) increasing or



decreasing values in such a way that each variable in the system of equations
will only be changed finitely many times. This will guarantee termination albeit
at the cost of a loss of precision. Widening for numerical domains has received
a lot of attention, e.g. [21, 22].

In this context, we discuss the interval domain (see 3.3), a simple and yet
very useful numerical domain with infinite ascending chains.

3.2 Constant Propagation

Constant propagation attempts to find out for each program point which vari-
ables have which constant values whenever execution reaches that point. The
resulting information can be used to fold (sub-)expressions and conditions, i.e.,
compute their values at compile time.

The abstract domain of constant propagation is constructed in two steps; we
first define a partial order for the potential values of variables, the domain:

Z
⊤ = Z ∪ {⊤} and x ⊑Z⊤ y iff y = ⊤ or x = y

where ⊤ is an extension of the set of integer values used to denote that the value
of a variable is unknown.

The representation function maps integers to the corresponding element in
Z
⊤, i.e. βZ⊤(z) = z. The abstraction function takes subsets M ⊆ Z of the

integers as arguments; it maps singleton sets to their element and all other sets
to unknown:

αZ⊤(M) =

{

z if M = {z}

⊤ otherwise
.

The concretization is defined by

γZ⊤(⊤) = Z and γZ⊤(z) = {z} iff z 6= ⊤ .

In a second step, we lift the abstraction for values to an abstraction of variable
bindings (states) and consider the complete lattice:

A = (Vars → Z
⊤)⊥ = (Vars → Z

⊤) ∪ {⊥}

The new element ⊥ denotes the fact that the analysis has not yet reached this
program point. The partial order on this abstract domain, “⊑”, is defined as:

D1 ⊑ D2 iff ⊥ = D1 or D1 x ⊑Z⊤ D2 x for all x ∈ Vars

An abstract variable binding D1 is more precise than a binding D2 if D1 binds
all variables that D2 also “knows” to the same values, but possibly knows some
more values of variables. A together with this partial order is a complete lattice.

The concretization γ(⊥) of the bottom element is the empty set of variable
bindings, for all other abstract variable bindings D, it is the lifting of the con-
cretization of Z

⊤:

γ(D) = {s | ∀v ∈ V ars : s(v) ∈ γZ⊤(D(v))} .



The representation function is given by: β(s)(v) = βZ⊤(s(v)). The abstraction
function maps the empty set to the bottom element, for non-empty sets we lift
the abstraction function of Z

⊤:

α(S′)(v) = αZ⊤({s(v) | s ∈ S′})

The transfer functions of statements, JopK
♯

: A→ A, simulate the concrete
evaluation function. They employ an abstract evaluation function for arithmetic
expressions. For a binary operator 2, it is defined by:

a 2
♯ b =

{

⊤ if a = ⊤ or b = ⊤
a 2 b otherwise

The evaluation function is able to deal with unknown values of variables. It
propagates this information; the result is ⊤ if one of the operands is unknown,
i.e., is ⊤. The result is the same as in the concrete case for two known operands.
The transfer functions of the abstract semantics for the toy language are given
in Figure 1.

Fig. 1. The abstract semantics for constant propagation:

Jx← eK♯
D = D ⊕ {x 7→ JeK♯

D}

Jtrue (e)K♯
D =



⊥ if JeK♯
D = ff

D otherwise

Jfalse (e)K♯
D =



⊥ if JeK♯
D = tt

D otherwise

If the condition can be definitely evaluated to ff, then the true branch is
unreachable, and if it can be definitely evaluated to tt, then the false branch
is unreachable. An assignment is analyzed by evaluating the right side in the
abstract variable binding and over-writing the binding of the left side with the
resulting value, which may be ⊤.

Constant propagation is useful for timing analysis since it transports stati-
cally available information to relevant places. The computed information is used
by value analysis and control-flow analysis. Though of infinite size the domain
is only of finite height, i.e. there are no infinite ascending chains. Further, the
presented abstraction and concretization function form a Galois connection.

3.3 Interval Analysis

A static method for data-cache behavior prediction needs to know effective mem-
ory addresses of data, in order to determine where a memory access goes. How-
ever, effective addresses are only available at run time. Here interval analysis as
described by Cousot and Cousot [19] comes into play. It can compute intervals



for address-valued objects like registers and variables. An interval computed for
such an object at some program point bounds the set of potential values the
object may have when program execution reaches this program point. Such an
analysis, as part of aiT’s value analysis, has been shown to be very effective on
disciplined code [7].

Interval analysis generalizes constant propagation by replacing the domain
Z
⊤ for variables by that of intervals. The interval domain is given by

I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, l ≤ u}

Note that this definition admits only intervals that represent non-empty sets of
integers. The set of intervals is ordered by “⊑”, defined by

[l1, u1] ⊑I [l2, u2] iff l2 ≤ l1 ∧ u1 ≤ u2

Least upper bound and greatest lower bound of two intervals are defined by:

[l1, u1] ⊔ [l2, u2] = [min{l1, l2}, max{u1, u2}]
[l1, u1] ⊓ [l2, u2] = [max{l1, l2}, min{u1, u2}], if max{l1, l2} ≤ min{u1, u2}

The representation function maps an integer to a singleton interval: βI(z) =
[z, z] and the abstraction function maps a subset M ⊆ Z of the integers to
an interval with the infimum and supremum of M as endpoints: αI(M) =
[infz∈M z, supz∈M z]. The concretization function relates concrete values and in-
tervals:

γI([l, u]) = {z ∈ Z | l ≤ z ≤ u} .

Analogous to constant propagation, the numerical abstraction for variable
values is lifted to an abstraction of variable bindings (states), i.e. we consider
the complete lattice with elements (V ars→ I)⊥.

To obtain an abstract semantics, some arithmetic on intervals is defined, first
the sum of two intervals: [l1, u1] +♯ [l2, u2] = [l1 + l2, u1+u2] where −∞+ =
−∞ and +∞+ = +∞ (the underscore stands for “any value”). For unary
minus, we define: −♯ [l, u] = [−u,−l]. Multiplication on intervals is more involved
and division yet more difficult. For this and comparisons on intervals, we refer
to [23]. The abstract semantics is the same as the one for constant propagation
(cf. Figure 1) except that it uses the expression evaluation function for intervals.

Achieving termination of interval analysis requires some extra work because
the partially ordered domain I, as opposed to Z

⊤, exhibits infinitely ascending
chains, e.g.

[0, 0] ⊏ [0, 1] ⊏ [0, 2] ⊏ [−1, 2] ⊏ . . .

and so does the lifted lattice (V ars → I)⊥. In order to enforce termination
of fixpoint iteration, widening is used [19, 20]. In our present interval analysis,
any increasing upper bound of an interval will immediately be set to ∞, any
decreasing lower bound of an interval to −∞.

Interval analysis produces relevant information for cache analysis. The smaller
the intervals bounding potential data addresses, the more precise are the results
of cache analysis. The presented abstraction and concretization function form a
Galois connection.



3.4 Cache Analysis

Abstract interpretation is also used to compute invariants about cache contents
at all program points.

For brevity, we restrict our description to the semantics of fully associative
caches with LRU replacement strategy. We refer to [24, 17] for descriptions of
how to deal with direct-mapped and A-way set associative caches.

In the following, we consider a (fully associative) cache as a set of cache lines
L = {l1, . . . , ln} and the store as a set of memory blocks M = {m1, . . . , mk}. To
indicate the absence of any memory block in a cache line, we introduce a new
element I; M ′ = M ∪{I}. A (concrete) cache state is a function c : L→M ′. C

denotes the set of all concrete cache states. The initial cache state cI maps all
cache lines to I. If c(l) = mi for a concrete cache state c, then i is the relative
age of the memory block.

The cache update function U : C ×M → C determines the new cache state
for a given cache state and a referenced memory block. The LRU (Least-Recently
Used) strategy always makes the referenced memory block the youngest,
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Fig. 2. Update of a concrete cache.

i.e. the referenced memory block moves
into l1 if it was in the cache already (cache
hit). All memory blocks in the cache that
had been used more recently than the ref-
erenced block increase their relative age
by one, i.e., they are shifted by one po-
sition to the next cache line. If the refer-
enced memory block was not yet in the
cache (cache miss), it is loaded into l1 af-
ter all memory blocks in the cache have
been shifted and the ‘oldest’, i.e., least re-
cently used memory block, has been re-
moved from the cache if the cache was full.
This is depicted in Figure 2.

In our present exposition, we assume
that for each basic block, the sequence of
references to memory is known, i.e., there
exists a mapping from operations to sequences of memory blocks: L : Op→M∗.
This is realistic for instruction caches. For data caches, only intervals may be
available. The techniques described here are also routinely applied to data caches.
The slight adaptions necessary to handle adress intervals can be found in [16].

We can describe the effect of such a sequence on a cache with the help of the
update function U. Therefore, we extend U to sequences of memory references by
sequential composition: U(c, 〈mx1

, . . . , mxy
〉) = U(. . . (U(c, mx1

)) . . . , mxy
). The

cache semantics of an operation op at a control-flow edge is then JopK = U(·,Lop).

The collecting semantics would be computable, although often of enormous
size. Therefore, another step abstracts it into a compact representation, so called
abstract cache states. Note that every information drawn from the abstract cache



states allows to safely deduce information about sets of concrete cache states, i.e.,
only precision may be reduced in this two step process. Correctness is guaranteed.

The abstraction consists in two analyses one computes an under- and the
other an overapproximation of the cache content as follows: To classify definite
cache hits, the must analysis determines a set of memory blocks that are in
the cache at a given program point whenever execution reaches this point. To
classify definite misses, a may analysis, not described in this paper, determines
all memory blocks that may be in the cache at a given program point.

The domains for the must analysis (and also the may analysis) consist of
abstract cache states: An abstract cache state c♯ : L → 2M maps cache lines to
sets of memory blocks. These sets are disjoint so that each memory block has
unique position: it is either in one of the abstract cache lines or it is not in the
cache. The position of a memory block in an abstract cache denotes, as in the
case of concrete caches, the relative age of the corresponding memory blocks. As
explained above, must analysis determines a set of memory blocks that are in
the cache at a given program point whenever execution reaches this point. The
positions of the memory blocks in the abstract cache state are thus the upper
bounds of the ages of the memory blocks in the concrete caches occurring in the
collecting cache semantics.

Good information, in the sense of being valuable for the prediction of cache
hits, is the knowledge that a memory block is in the cache. The bigger the set
the better. This is connected to the “age” of a memory block. Therefore, the
partial order ⊑ is as define follows: Take an abstract cache state c♯. Elements
that are higher up with respect to ⊑ than c♯ in the domain, i.e., less precise, are
states where memory blocks from c♯ are either missing or are older than in c♯.
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Fig. 3. Join.

Therefore, the
⊔

-operator applied to

two abstract cache states c
♯
1 and c

♯
2

will produce a state c♯ containing
only those memory blocks contained
in both, and will give them the max-
imum of their ages in c

♯
1 and c

♯
2 (see

Figure 3). The representation function
β : C → C♯ forms singleton sets from
concrete cache states it is applied to,
i.e., β(c)(li) = {mx} if c(li) = cx.
Concretization of an abstract cache
state, c♯, produces the set of all con-
crete cache states, which contain all
the memory blocks contained in c♯

with ages not older than in c♯. Cache
lines not filled by these are filled with
other memory blocks. The concretization function γ : C♯ → 2c is defined by
γ(c♯) = {c | β(c) ⊑ c♯}.

The abstract semantics is defined by abstract cache update functions, denoted
U♯, which describe the effects of a control flow edge on an element of the abstract



domain. An abstract cache update function (example depicted in Figure 4) is a
lifted version of the corresponding concrete update function to sets, in that the
referenced memory block goes to line l1, all younger blocks age by one.
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Fig. 4. Update of an abstract cache.

The solution of the must analysis problem is interpreted as follows: Let c♯ be
an abstract cache state at some program point. If mx ∈ c♯(li) for a cache line li
then mx will definitely be in the cache whenever execution reaches this program
point. A reference to mx is categorized as always hit (ah).

Termination. There are only a finite number of cache lines and for each program
a finite number of memory blocks. This means, that the domain of abstract cache
states c : L → 2M is finite. Hence, every ascending chain is finite. Additionally,
the abstract cache update functions, U♯, are monotonic. This guarantees that all
the analyses will terminate.

The abstract cache-state domain is essential for the efficiency and therefore
for the feasibility of cache analysis. The results are precise enough although this
type of cache analysis loses information at merge points. More precise analyses
are possible. However, experiments have shown that the corresponding analyses
are too slow.

The domain for LRU caches fulfills the ascending chain condition and forms
a Galois connection. For other cache domains, such as for the popular Pseudo-
LRU caches, there does not exist an optimal abstraction function, and hence no
Galois connection [18].

3.5 Pipeline Analysis

Most state-of-the-art processors employed in embedded systems today have an
instruction pipeline, i.e. the execution of several instructions is overlapped. In-
structions simultaneously pass through different pipeline stages: An instruction
is first loaded from memory (fetch stage). The duration of this stage is deter-
mined by the contents of the instruction cache. The instruction is then ready to
be dispatched: it is decoded and operands are fetched. In the execution stage,
instructions compete for resources, such as execution units, buses and memory,
producing complex interdependences. Depending on the internal state of the pro-
cessor the time from fetch to completion of an instruction can vary by several
orders of magnitude.



Pipeline analysis works on executable programs and is based on an abstract
timing model for the specific processor. A timing model is a state machine whose
transitions correspond to clock cycles of the modeled processor. Technically,
pipeline analysis is a program analysis on the basic block graph1 that computes
for each basic block an invariant on the machine states that can occur at it and
an execution time bound for the number of cycles it takes to execute it whenever
execution reaches that block. The abstract semantics of a basic block computes
from the abstract processor states at entry to the block the set of processor states
on exit of the block together with the bound. To this end, the analysis runs the
abstract timing model of the processor cycle per cycle. Whenever abstraction
produces uncertainty, e.g. inability to classify a cache access as a hit or a miss,
the analysis follows all possibilities (both hit and miss case).

The structure of a timing model is determined by the different processor units
and its memory system: the pipeline stages, a model of the processor chipset, the
bus unit, the branch predictor, register files, and arithmetic units etc. Though
structurally similar to the processor, the model concentrates on timing-relevant
control components and data, e.g., it is not interested in what an arithmetic
instruction computes, but in how many cycles the instruction takes.

Value analysis can be considered as factored-out arithemtic. The pipeline
timing model imports the results of the value analsysis. The memory system is
concisely abstracted by the chipset unit, bus unit and the cache domain described
in the previous section and similarly factored out.

Cache and pipeline analysis are integrated to reflect the interdependences
between the caches and the pipeline due to speculation and prefetching [25].

Abstract domain and transfer functions are determined by the timing model.
The pipeline analysis for a state-of-the-art processor described in [25] uses the
following domains:

– An abstract state of the timing model is a tuple (p, c♯) consisting of the
pipeline state p and an abstract cache state c♯. It represents a set of concrete
states of the timing model.

– From the above domain of tuples, the disjunctive completion is taken. This
results in a lattice whose elements are sets of states of the timing model.
However, rather than taking set union as a join operator, a more sophisti-
cated join is used that leverages the join operator of the cache domain. It
takes a set of sets of processor states as input and produces a set of pro-
cessor states that overapproximates the union of the input sets. Its number
of elements equals the number of distinct pipeline states in the input sets.
The join operator loses precision only on the cache side by joining abstract
cache states where abstract pipeline state is identical. In the result set, each
abstract pipeline state p is adjoined with the join of a set of abstract caches,
namely the join of the abstract caches c♯ such that (p, c♯) appears in one of
the input sets:

⊔

{Si | i = 1, ..., k} = {(p, c) | ∃i.(p, c′) ∈ Si ∧ c =
⊔

{c′′ | (p, c′′) ∈ Sj}}

1 A basic block is a maximal sequence of straight-line code in the program.



– The abstract domain results as the product of the semi-lattice of natural
numbers with the maximum as join operator and the lattice of timing model
states. The join operator is defined by:

⊔

{(ni, Si) | i = 1, ..., k} = (max
i

ni,
⊔

{Si | i = 1, ..., k}

An abstract state is a tuple: the first component is a time bound (a number)
and the second component a set of states of the timing model.

To evaluate the transfer function JopK
♯
(a) for a control flow edge (b, op, b′)

and a tuple (., S) (the first component is ignored), a finite transition system
is computed. Its initial states are all those states I ⊆ S that load at least
one instruction of basic block b. The transitions are determined by the timing
model. Its final states F are those in which all instruction within basic block b

have been completed. The transition system is acyclic and finite. Let k be the
maximal length of a path from initial to the final states, then JopK

♯
(a) = (k, F ).

4 Related Approaches

Timed automata [26] (or networks thereof) have been used to express timing
constraints of real-time systems and require durations and time bounds. Timing
analysis can deliver such bounds in the form of lower and upper bounds on the
execution time for a realistic architecture.

Campos et al. [27–29] leverage finite-state BDD-based model checking for
timing analysis. This work is not comparable with the approach proposed in
this tutorial since results were only obtained for highly simplified architectures
without typical features of modern processors such as caches and pipelining.

The works by Logothetis, Schuele and Schneider [30–32] describe timing anal-
yses of assembler programs using symbolic simulation. This work remains at the
machine-independent level and is based on the unit-time assumption.

Metzner [33] proposed to use BDD-based model checking for cache behavior
prediction instead of abstract interpretation and reported some gain (1.5-5%)
in precision over cache analysis by abstract interpretation [34] because joins at
control-flow merge points are avoided. The experiments considered a very small
cache and an extremely simple pipeline. Scalability of the analysis to industrial-
scale benchmarks was not shown. Furthermore, the experimental results are
limited to instruction caches for which cache analysis is easier than for data
caches because the addresses are statically known and access patterns are more
regular.

5 Conclusion

A short introduction into the theory of abstract interpretation was given, and
several instances of abstract interpretations are described that are used in tim-
ing analysis. The different analyses have quite different characteristics. Constant
propagation, interval analysis, and cache analysis live on the design of the right



abstract domain. They represent sets of concrete values by single abstract val-
ues. Further, while cache and pipeline analysis employ a finite domain, constant
propagation and interval analysis exhibit infinite domains, yet only the interval
domain has infinite ascending chains and requires widening for termination.

For pipeline analysis, a suitable representation of sets of concrete pipeline
states by single abstract states has not been found and is probably hard to find.
Pipeline analysis is not a typical static program analysis. It can rather be seen
as a hybrid: it employs both state traversal of the pipeline evolution and join
operations typical for static analysis.
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thesis, Université de Grenoble (1978)

4. Lacan, J., Monfort, J.N., Ribal, V.Q., Deutsch, A., Gonthier, G.: The software
reliability verification process: The Ariane 5 example. DAta Systems In Aerospace
(1998) SP-422.

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
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