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Parametric Timing Analysis – Why?

• timing analysis essential for hard real-time systems

• many systems depend on input parameters
(operating system schedulers, etc.)

• only two possible solutions:

1 assume upper bounds on the unknown parameters
⇒ highly overapproximated execution-time bound

2 restart the analysis for all parameter assignments
⇒ very high analysis time

• parametric timing analysis delivers timing formula instead of a
numeric value
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Parametric Timing Analysis – How?

CFG Reconstruction

Value/Loop Analysis

Pipeline Analysis

Path Analysis

CFG Reconstruction extracts the control flow graph from the
executable.

Value/Loop Analysis determines values for registers and memory
accesses determines loop bounds and parametric loop
bound expressions.

Pipeline Analysis derives bounds on the execution times T (vi ) of
all basic blocks.

Path Analysis combines execution times of basic blocks and loop
bounds to determine longest execution path.

Framework according to [1].
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Path Analysis; Longest Paths via ILP
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• Implicit path enumeration (IPET [4])

• Control flow graph and the loop bounds are transformed into
flow constraints.

• Upper bounds for the execution times used as weights.
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Parametric Path Analysis; Longest Paths via ILP
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• Non-linear inequalities ⇒ need for approximation

• Need to solve an ILP/ parametric PIP [3]

• slow and imprecise in case of parametric ILP
bla
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Determing Longest Paths in Control Flow Graphs

Problem is NP-hard in general

But: may be solved efficently for restricted graphs
⇒ Singleton-Loop Model
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What is a Singleton Loop?

Idea: Code for hard real-time systems often well structured.
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- A loop in a CFG is a strongly
connected component (SCC).

- Structured loops (no Gotos
etc.) have a single entry node.

A singleton loop is a SCC with exactly one entry node.
A singleton loop graph is a CFG that contaisn only singleton loops.
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Detailed Explanation
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• Assume we know for each loop (by
recursion):

• Longest paths from its entry
node to its portal nodes.

• Contract loop to artifical node N.

• set weight of incident edges
appropriately
w1 := lps(v1, v4) + w(v4, v6),
w2 := lps(v1, v5) + w(v5, v6)

• Left with a directed acyclic graph.

• Longest Path Computation in
polynomial time.
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The Singleton-Loop Model - How to recurse

v1

v2

v3v4

v5

• Given a loop L, with loop
bound bL.

• Recall:
want to determine LPs from
entry node to portal nodes

• Replace entry node v1 by

• two nodes v in
1 , vout

1 with
• in- and outgoing edges of

v1 assigned accordingly

• Recurse algorithm on this
new graph

• we know LP(vout
1 , vi ) and

LP(vout
1 , v in

1 )

• lps(v1, pi ) := (bL − 1) ·
lps(vout

1 , v in
1 ) + lps(vout

1 , pi ))
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Runtime Properties

Worst Case Running Times

• numeric bounds: O(|V ||E |)
• symbolic bounds: O(|V ||E |+ |V |2 · x · s(x)) where

• x is the # of symbolic bounds
• s(x) is the output size

Output Size

In the worst case:
22x−1 ≤ s(x) ≤ 22x

Output Sensitivity

The algorithm is polynomial output sensitive, i.e. its running time
is polynomial in the input size and in the output size.
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Beyond the Singleton-Loop Model

What happens, if CFG has non-singleton loops?

v1

v2v3

v4

Convert the CFG!

Each CFG can be transformed into an Singleton Loop Graph

Disadvantage: Comes at the cost of increased running time!
(e.g. symbolic bounds can be doubled!)
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How useful is the new approach in practise?

Depends on:

• How well does the Singleton-Loop Model fits real CFGs?

• How does the Singleton-Loop Approach perform?

• How much precision is gained?

Testsetting:

• Benchmarks from Mälardalen WCET benchmark suite.

• Compiled via gcc to the ARM7 processor.

• Analyzed on an Intel Core2Duo, 2GHz, 2 GB Ram with
Ubuntu 9.10.
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Number of Singleton Loops

• Only 8 of 33 test-cases exhibit non-singleton loops
(adpcm, cnt, compress, duff, matmult, ndes, ns, qsort-exam).

• Only in one case (compress) a higher number of
loop-duplications (65) is needed (all others < 10).

Deeply nested loops, unstructured code segments, calls to external
library functions causes non-singleton loops.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 14 / 20



Compare perfomance to?

Numerica Path Analysis

• ILP Formulation with lp solve (free lp-solver)
• ILP Formulation with CPLEX

(commercial lp-solver)

Parametric Path Analysis

• Parametirc ILP Formulation with PIP [3]
(free parametric lp-solver)

• Parametric timing analysis by Bygde and
Lisper [5, 2]
resorts to C-level, not to binary level, uses a
polyhedran approach;
direct comparison not possible
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Performance Evaluation – Test-Cases are ver small

Testcases from Mälardalen WCET benchmark suite are very small
(all are solved in less than 1 second by all approaches)

Name
Size (in Byte) Singleton # duplicated

C-File Exec Graph loops

s-graph-1 208273 235222 yes -
s-graph-2 468944 292305 yes -
s-graph-3 702670 386961 yes -
s-graph-4 936396 481609 yes -
s-graph-5 670452 284593 yes -

ns-graph-1 90274 215433 no 77
ns-graph-2 315562 247443 no 77
ns-graph-3 766144 426427 no 77
ns-graph-4 990502 520579 no 5
ns-graph-5 979908 518338 no 9
ns-graph-6 942084 502580 no 74

Larger benchmarks created by combining and duplicating original
test-cases from the benchmark suite

(s-graph-X are singleton loop graphs, ns-graph-X non-singleton loop graphs)
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Performance Evaluation, Numeric

Name
Runtime (s)

SingletonLoop lp solve CPLEX

nsichneu 0.02 0.86 0.05
s-graph-1 0.03 3.46 0.08
s-graph-2 0.05 13.69 0.08
s-graph-3 0.08 30.85 0.11
s-graph-4 0.11 57.31 0.18
s-graph-5 0.11 108.8 0.13

adpcm 0.04 0.07 0.02
compress 0.3 0.03 0.03
statemate 0.05 0.3 0.04

ns-graph-1 0.97 4.5 0.04
ns-graph-2 0.95 14.58 0.05
ns-graph-3 1.01 48.13 0.12
ns-graph-4 0.14 92.1 0.11
ns-graph-5 0.16 113.3 0.12
ns-graph-6 0.64 65.9 0.17
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Performance Evaluation, Parametric

Name
Runtime # of parameters

0 1 2 3 4 6 8

s-graph-1 0.03 0.03 0.03 0.03 0.03 - -
s-graph-2 0.05 0.05 0.05 0.05 0.05 0.05 0.06
s-graph-3 0.08 0.08 0.08 0.08 0.08 0.08 0.11
s-graph-4 0.11 0.11 0.11 0.11 0.12 0.12 0.12
s-graph-5 0.11 0.12 0.12 0.12 0.12 0.12 0.13

ns-graph-1 0.97 1 1.73 1.9 2.02 2.11 2.11
ns-graph-2 0.95 2.03 2.03 2.04 2.36 2.35 2.38
ns-graph-3 1.01 1.01 1.01 1.01 1.24 3.42 3.44
ns-graph-4 0.14 0.22 0.28 0.3 0.33 0.45 0.45
ns-graph-5 0.16 0.28 0.33 0.62 0.67 1.11 1.11
ns-graph-6 0.64 0.64 0.64 0.66 0.71 1.19 1.19

measurements only of singleton loop method
all other approaches fail to solve these test-cases

(PIP and Bygde’s approach [2] handle at most two parameters)
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Evaluation: Precision of the Parametric Formulas
Insertsort Matmult

TimePIP(n) = 156n2 + 674n + 1186

TimeSingleton(n) = 131n2 + 71n + 1185

TimePIP(n) =


386n3 + 782n2

+ 790n + 643 if n > 1

2992 if n ≤ 1

TimeSingleton(n) = 111n3+164n2+845n+793

• Singleton Loop Method is precise

• PIP suffers fro imprecision due to loop bound transformation.

• Bygde’s approach is precise in most, but not in all cases
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Conclusions
Singleton Loop Graphs are restricted CFG that enable computation of

• numeric timing bound in polynomial time,

• parametric timing bound in output-polynomial time
(significant improvment over former methods), and

• precise parametric timing bounds.

All CFGs can be transformed to singleton loop graphs
(at the cost of performance loss).

Evaluation showed that

• most benchmarks fit the singleton loop model,

• singleton loop approach can compete with CPLEX,

• enable fast and precise computation of parametric timing bounds.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 20 / 20



Thanks for your attention.
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Appendix: Mälardalen Benachmark Suite
Name

Size (in Byte) Singleton # duplicated
C-File Exec Graph loops

adpcm 26582 156759 no 5
bs 4248 144447 yes -
bs100 2779 144629 yes -
cnt 2880 149801 yes -
compress 13411 149804 no 65
cover 5026 148301 yes -
crc 5168 145615 yes -
duff 2374 144739 no 6
edn 10563 150682 yes -
expint 4288 145867 yes -
fac 426 144148 yes -
fdct 8863 147128 yes -
fft1 6244 153303 yes -
fibcall 3499 144152 yes -
fir 11965 151589 yes -
insertsort 3892 144305 yes -
jannecomplex 1564 144242 yes -
jfdctint 16028 146858 yes -
lcdnum 1678 144509 yes -
lms 7720 157868 yes -
ludpcm 5160 151848 yes -
matmult 3737 145083 no 4
minver 5805 152845 yes -
ndes 7345 148689 no 2
ns 10436 149567 no 7
nsichneu 118351 176240 yes -
prime 904 144538 yes -
qsort-exam 4535 146468 no 3
qurt 4898 151214 yes -
recursion 620 144341 yes -
select 4494 146283 yes -
sqrt 3567 154282 yes -
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Appendix: Imprecision of Parametric ILP Approach

v1
L1

v2

v3

L2

v5

v6

v7

• Only one loop taken in actual execution

• parametric ILP needs to upper bound entry node: both loops
are part of the WCET Path
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