
Precise and Efficient Parametric Path Analysis

Ernst Althaus, Sebastian Altmeyer, Rouven Naujoks

Johannes Gutenberg-Universität Mainz
Saarland University

Max-Planck-Institut für Informatik

LCTES 2011, Chicago

1 Parametric Timing Analysis
Motivation
Toolchain
Path Analysis

2 Singleton Loop Model
What is a Singleton Loop?
Exploit the Singleton Loop Model
Runtime
Beyond Single Loops

3 Evaluation
Structure of the Benchmarks
Performance Evaluation
Precision

4 Conclusions

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 2 / 20

Parametric Timing Analysis – Why?

• timing analysis essential for hard real-time systems

• many systems depend on input parameters
(operating system schedulers, etc.)

• only two possible solutions:

1 assume upper bounds on the unknown parameters
⇒ highly overapproximated execution-time bound

2 restart the analysis for all parameter assignments
⇒ very high analysis time

• parametric timing analysis delivers timing formula instead of a
numeric value

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 3 / 20

Parametric Timing Analysis – How?

CFG Reconstruction

Value/Loop Analysis

Pipeline Analysis

Path Analysis

CFG Reconstruction extracts the control flow graph from the
executable.

Value/Loop Analysis determines values for registers and memory
accesses determines loop bounds and parametric loop
bound expressions.

Pipeline Analysis derives bounds on the execution times T (vi) of
all basic blocks.

Path Analysis combines execution times of basic blocks and loop
bounds to determine longest execution path.

Framework according to [1].

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 4 / 20

Path Analysis; Longest Paths via ILP

bl

v1

v2

n1

v3

n2

v4
n4

n5

v5

n6

n3

max
∑

i

∑
nj∈inc(vi)

T (vi)nj

n1 = 1

n1 = n2 + n3

n2 + n5 = n4 + n6

n4 = n5

n3 + n6 = 1

n4 <= bl · n2

• Implicit path enumeration (IPET [4])

• Control flow graph and the loop bounds are transformed into
flow constraints.

• Upper bounds for the execution times used as weights.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 5 / 20

Parametric Path Analysis; Longest Paths via ILP

bl

v1

v2

n1

v3

n2

v4
n4

n5

v5

n6

n3

max
∑

i

∑
nj∈inc(vi)

T (vi)nj

n1 = 1

n1 = n2 + n3

n2 + n5 = n4 + n6

n4 = n5

n3 + n6 = 1

n4 <= ���bl · n2 bl · c

• Non-linear inequalities ⇒ need for approximation

• Need to solve an ILP/ parametric PIP [3]

• slow and imprecise in case of parametric ILP
bla

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 6 / 20

Parametric Path Analysis; Longest Paths via ILP

bl

v1

v2

n1

v3

n2

v4
n4

n5

v5

n6

n3

max
∑

i

∑
nj∈inc(vi)

T (vi)nj

n1 = 1

n1 = n2 + n3

n2 + n5 = n4 + n6

n4 = n5

n3 + n6 = 1

n4 <= ���bl · n2 bl · c

• Non-linear inequalities ⇒ need for approximation

• Need to solve an ILP/ parametric PIP [3]

• slow and imprecise in case of parametric ILP
bla

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 6 / 20

Determing Longest Paths in Control Flow Graphs

Problem is NP-hard in general

But: may be solved efficently for restricted graphs
⇒ Singleton-Loop Model

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 7 / 20

Determing Longest Paths in Control Flow Graphs

Problem is NP-hard in general

But: may be solved efficently for restricted graphs
⇒ Singleton-Loop Model

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 7 / 20

What is a Singleton Loop?

Idea: Code for hard real-time systems often well structured.

bl

v1

v2

n1

v3

n2

v4
n4

n5

v5

n6

n3

- A loop in a CFG is a strongly
connected component (SCC).

- Structured loops (no Gotos
etc.) have a single entry node.

A singleton loop is a SCC with exactly one entry node.
A singleton loop graph is a CFG that contaisn only singleton loops.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 8 / 20

Detailed Explanation

v0

v1

v2

v3v4

v5

v6

v1

v1

v1

w1 w2

• Assume we know for each loop (by
recursion):

• Longest paths from its entry
node to its portal nodes.

• Contract loop to artifical node N.

• set weight of incident edges
appropriately
w1 := lps(v1, v4) + w(v4, v6),
w2 := lps(v1, v5) + w(v5, v6)

• Left with a directed acyclic graph.

• Longest Path Computation in
polynomial time.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 9 / 20

Detailed Explanation

v0

v1

v2

v3v4

v5

v6

v1

v1

v1

w1 w2

• Assume we know for each loop (by
recursion):

• Longest paths from its entry
node to its portal nodes.

• Contract loop to artifical node N.

• set weight of incident edges
appropriately
w1 := lps(v1, v4) + w(v4, v6),
w2 := lps(v1, v5) + w(v5, v6)

• Left with a directed acyclic graph.

• Longest Path Computation in
polynomial time.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 9 / 20

Detailed Explanation

v0

v1

v2

v3v4

v5

v6

v0

N

v6

w1 w2

• Assume we know for each loop (by
recursion):

• Longest paths from its entry
node to its portal nodes.

• Contract loop to artifical node N.
• set weight of incident edges

appropriately
w1 := lps(v1, v4) + w(v4, v6),
w2 := lps(v1, v5) + w(v5, v6)

• Left with a directed acyclic graph.

• Longest Path Computation in
polynomial time.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 9 / 20

Detailed Explanation

v0

v1

v2

v3v4

v5

v6

v0

N

v6

w1 w2

• Assume we know for each loop (by
recursion):

• Longest paths from its entry
node to its portal nodes.

• Contract loop to artifical node N.
• set weight of incident edges

appropriately
w1 := lps(v1, v4) + w(v4, v6),
w2 := lps(v1, v5) + w(v5, v6)

• Left with a directed acyclic graph.
• Longest Path Computation in

polynomial time.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 9 / 20

The Singleton-Loop Model - How to recurse

v1

v2

v3v4

v5

• Given a loop L, with loop
bound bL.

• Recall:
want to determine LPs from
entry node to portal nodes

• Replace entry node v1 by

• two nodes v in
1 , vout

1 with
• in- and outgoing edges of

v1 assigned accordingly

• Recurse algorithm on this
new graph

• we know LP(vout
1 , vi) and

LP(vout
1 , v in

1)

• lps(v1, pi) := (bL − 1) ·
lps(vout

1 , v in
1) + lps(vout

1 , pi))

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 10 / 20

The Singleton-Loop Model - How to recurse

v in
1 vout

1

v2

v3v4

v5

• Given a loop L, with loop
bound bL.

• Recall:
want to determine LPs from
entry node to portal nodes

• Replace entry node v1 by
• two nodes v in

1 , vout
1 with

• in- and outgoing edges of
v1 assigned accordingly

• Recurse algorithm on this
new graph

• we know LP(vout
1 , vi) and

LP(vout
1 , v in

1)

• lps(v1, pi) := (bL − 1) ·
lps(vout

1 , v in
1) + lps(vout

1 , pi))

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 10 / 20

The Singleton-Loop Model - How to recurse

v in
1 vout

1

v2

v3v4

v5

• Given a loop L, with loop
bound bL.

• Recall:
want to determine LPs from
entry node to portal nodes

• Replace entry node v1 by
• two nodes v in

1 , vout
1 with

• in- and outgoing edges of
v1 assigned accordingly

• Recurse algorithm on this
new graph

• we know LP(vout
1 , vi) and

LP(vout
1 , v in

1)

• lps(v1, pi) := (bL − 1) ·
lps(vout

1 , v in
1) + lps(vout

1 , pi))

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 10 / 20

The Singleton-Loop Model - How to recurse

v in
1 vout

1

v2

v3v4

v5

• Given a loop L, with loop
bound bL.

• Recall:
want to determine LPs from
entry node to portal nodes

• Replace entry node v1 by
• two nodes v in

1 , vout
1 with

• in- and outgoing edges of
v1 assigned accordingly

• Recurse algorithm on this
new graph

• we know LP(vout
1 , vi) and

LP(vout
1 , v in

1)

• lps(v1, pi) := (bL − 1) ·
lps(vout

1 , v in
1) + lps(vout

1 , pi))

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 10 / 20

Runtime Properties

Worst Case Running Times

• numeric bounds: O(|V ||E |)
• symbolic bounds: O(|V ||E |+ |V |2 · x · s(x)) where

• x is the # of symbolic bounds
• s(x) is the output size

Output Size

In the worst case:
22x−1 ≤ s(x) ≤ 22x

Output Sensitivity

The algorithm is polynomial output sensitive, i.e. its running time
is polynomial in the input size and in the output size.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 11 / 20

Beyond the Singleton-Loop Model

What happens, if CFG has non-singleton loops?

v1

v2v3

v4

Convert the CFG!

Each CFG can be transformed into an Singleton Loop Graph

Disadvantage: Comes at the cost of increased running time!
(e.g. symbolic bounds can be doubled!)

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 12 / 20

Beyond the Singleton-Loop Model

What happens, if CFG has non-singleton loops?

v1

v2v3

v4

v2 v3

v4

Convert the CFG!

Each CFG can be transformed into an Singleton Loop Graph

Disadvantage: Comes at the cost of increased running time!
(e.g. symbolic bounds can be doubled!)

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 12 / 20

Beyond the Singleton-Loop Model

What happens, if CFG has non-singleton loops?

v1

v2v3

v4

v2 v3

v4

Convert the CFG!

Each CFG can be transformed into an Singleton Loop Graph

Disadvantage: Comes at the cost of increased running time!
(e.g. symbolic bounds can be doubled!)

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 12 / 20

How useful is the new approach in practise?

Depends on:

• How well does the Singleton-Loop Model fits real CFGs?

• How does the Singleton-Loop Approach perform?

• How much precision is gained?

Testsetting:

• Benchmarks from Mälardalen WCET benchmark suite.

• Compiled via gcc to the ARM7 processor.

• Analyzed on an Intel Core2Duo, 2GHz, 2 GB Ram with
Ubuntu 9.10.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 13 / 20

Number of Singleton Loops

• Only 8 of 33 test-cases exhibit non-singleton loops
(adpcm, cnt, compress, duff, matmult, ndes, ns, qsort-exam).

• Only in one case (compress) a higher number of
loop-duplications (65) is needed (all others < 10).

Deeply nested loops, unstructured code segments, calls to external
library functions causes non-singleton loops.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 14 / 20

Compare perfomance to?

Numerica Path Analysis

• ILP Formulation with lp solve (free lp-solver)
• ILP Formulation with CPLEX

(commercial lp-solver)

Parametric Path Analysis

• Parametirc ILP Formulation with PIP [3]
(free parametric lp-solver)

• Parametric timing analysis by Bygde and
Lisper [5, 2]
resorts to C-level, not to binary level, uses a
polyhedran approach;
direct comparison not possible

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 15 / 20

Performance Evaluation – Test-Cases are ver small

Testcases from Mälardalen WCET benchmark suite are very small
(all are solved in less than 1 second by all approaches)

Name
Size (in Byte) Singleton # duplicated

C-File Exec Graph loops

s-graph-1 208273 235222 yes -
s-graph-2 468944 292305 yes -
s-graph-3 702670 386961 yes -
s-graph-4 936396 481609 yes -
s-graph-5 670452 284593 yes -

ns-graph-1 90274 215433 no 77
ns-graph-2 315562 247443 no 77
ns-graph-3 766144 426427 no 77
ns-graph-4 990502 520579 no 5
ns-graph-5 979908 518338 no 9
ns-graph-6 942084 502580 no 74

Larger benchmarks created by combining and duplicating original
test-cases from the benchmark suite

(s-graph-X are singleton loop graphs, ns-graph-X non-singleton loop graphs)

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 16 / 20

Performance Evaluation, Numeric

Name
Runtime (s)

SingletonLoop lp solve CPLEX

nsichneu 0.02 0.86 0.05
s-graph-1 0.03 3.46 0.08
s-graph-2 0.05 13.69 0.08
s-graph-3 0.08 30.85 0.11
s-graph-4 0.11 57.31 0.18
s-graph-5 0.11 108.8 0.13

adpcm 0.04 0.07 0.02
compress 0.3 0.03 0.03
statemate 0.05 0.3 0.04

ns-graph-1 0.97 4.5 0.04
ns-graph-2 0.95 14.58 0.05
ns-graph-3 1.01 48.13 0.12
ns-graph-4 0.14 92.1 0.11
ns-graph-5 0.16 113.3 0.12
ns-graph-6 0.64 65.9 0.17

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 17 / 20

Performance Evaluation, Parametric

Name
Runtime # of parameters

0 1 2 3 4 6 8

s-graph-1 0.03 0.03 0.03 0.03 0.03 - -
s-graph-2 0.05 0.05 0.05 0.05 0.05 0.05 0.06
s-graph-3 0.08 0.08 0.08 0.08 0.08 0.08 0.11
s-graph-4 0.11 0.11 0.11 0.11 0.12 0.12 0.12
s-graph-5 0.11 0.12 0.12 0.12 0.12 0.12 0.13

ns-graph-1 0.97 1 1.73 1.9 2.02 2.11 2.11
ns-graph-2 0.95 2.03 2.03 2.04 2.36 2.35 2.38
ns-graph-3 1.01 1.01 1.01 1.01 1.24 3.42 3.44
ns-graph-4 0.14 0.22 0.28 0.3 0.33 0.45 0.45
ns-graph-5 0.16 0.28 0.33 0.62 0.67 1.11 1.11
ns-graph-6 0.64 0.64 0.64 0.66 0.71 1.19 1.19

measurements only of singleton loop method
all other approaches fail to solve these test-cases

(PIP and Bygde’s approach [2] handle at most two parameters)

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 18 / 20

Evaluation: Precision of the Parametric Formulas
Insertsort Matmult

TimePIP(n) = 156n2 + 674n + 1186

TimeSingleton(n) = 131n2 + 71n + 1185

TimePIP(n) =


386n3 + 782n2

+ 790n + 643 if n > 1

2992 if n ≤ 1

TimeSingleton(n) = 111n3+164n2+845n+793

• Singleton Loop Method is precise

• PIP suffers fro imprecision due to loop bound transformation.

• Bygde’s approach is precise in most, but not in all cases

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 19 / 20

Conclusions
Singleton Loop Graphs are restricted CFG that enable computation of

• numeric timing bound in polynomial time,

• parametric timing bound in output-polynomial time
(significant improvment over former methods), and

• precise parametric timing bounds.

All CFGs can be transformed to singleton loop graphs
(at the cost of performance loss).

Evaluation showed that

• most benchmarks fit the singleton loop model,

• singleton loop approach can compete with CPLEX,

• enable fast and precise computation of parametric timing bounds.

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 20 / 20

Thanks for your attention.

References
S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm.

Parametric timing analyis for complex architectures.

In RTCSA’08, 2008.

S. Bygde, A. Ermedahl, and B. Lisper.

An efficient algorithm for parametric wcet calculation.

In RTCSA’09, 2009.

P. Feautrier.

The parametric integer programming’s home http:\www.piplib.org.

Y.-T. S. Li and S. Malik.

Performance analysis of embedded software using implicit path
enumeration.

In DAC ’95.

B. Lisper.

Fully automatic, parametric worst-case execution time analysis.

In (WCET 03).

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 20 / 20

http:\www.piplib.org

Appendix: Mälardalen Benachmark Suite
Name

Size (in Byte) Singleton # duplicated
C-File Exec Graph loops

adpcm 26582 156759 no 5
bs 4248 144447 yes -
bs100 2779 144629 yes -
cnt 2880 149801 yes -
compress 13411 149804 no 65
cover 5026 148301 yes -
crc 5168 145615 yes -
duff 2374 144739 no 6
edn 10563 150682 yes -
expint 4288 145867 yes -
fac 426 144148 yes -
fdct 8863 147128 yes -
fft1 6244 153303 yes -
fibcall 3499 144152 yes -
fir 11965 151589 yes -
insertsort 3892 144305 yes -
jannecomplex 1564 144242 yes -
jfdctint 16028 146858 yes -
lcdnum 1678 144509 yes -
lms 7720 157868 yes -
ludpcm 5160 151848 yes -
matmult 3737 145083 no 4
minver 5805 152845 yes -
ndes 7345 148689 no 2
ns 10436 149567 no 7
nsichneu 118351 176240 yes -
prime 904 144538 yes -
qsort-exam 4535 146468 no 3
qurt 4898 151214 yes -
recursion 620 144341 yes -
select 4494 146283 yes -
sqrt 3567 154282 yes -
statemate 52618 162879 no 7Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 20 / 20

Appendix: Imprecision of Parametric ILP Approach

v1
L1

v2

v3

L2

v5

v6

v7

• Only one loop taken in actual execution

• parametric ILP needs to upper bound entry node: both loops
are part of the WCET Path

Althaus, Altmeyer, Naujoks Precise and Efficient Parametric Path Analysis 20 / 20

	Parametric Timing Analysis
	Motivation
	Toolchain
	Path Analysis

	Singleton Loop Model
	What is a Singleton Loop?
	Exploit the Singleton Loop Model
	Runtime
	Beyond Single Loops

	Evaluation
	Structure of the Benchmarks
	Performance Evaluation
	Precision

	Conclusions

