
Pre-emption cost aware response time analysis
for fixed priority pre-emptive systems

Sebastian Altmeyer
Compiler Design Lab

Saarland University, Germany
Email: altmeyer@cs.uni-saarland.de

Robert I. Davis
University of York

York, UK
Email: rob.davis@cs.york.ac.uk

Claire Maiza
Verimag

INP Grenoble, France
Email: Claire.Maiza@imag.fr

Abstract—Without the use of cache the increasing gap between
processor and memory speeds in modern embedded micropro-
cessors would have resulted in memory access times becoming
an unacceptable bottleneck. In such systems, cache related pre-
emption delays can be a significant proportion of task execution
times. To obtain tight bounds on the response times of tasks
in pre-emptively scheduled systems, it is necessary to integrate
worst-case execution time analysis and schedulability analysis via
the use of an appropriate model of pre-emption costs.

In this paper, we introduce a new method of bounding
pre-emption costs, called the ECB-Union approach. The ECB-
Union approach complements an existing UCB-Union approach.
We combine the two into a simple composite approach that
dominates both. These approaches are integrated into response
time analysis for fixed priority pre-emptively scheduled systems.
Further, we extend this analysis to systems where tasks can access
resources in mutual exclusion, in the process resolving omissions
in existing models of pre-emption delays. A case study and
empirical evaluation demonstrate the effectiveness of the ECB-
Union and combined approaches for a wide range of different
cache configurations including cache utilization, cache set size,
reuse, and block reload times.

I. Introduction
During the last two decades, applications in aerospace and

automotive electronics have progressed from deploying em-
bedded microprocessors clocked in the 10’s of MHz range to
significantly higher performance devices operating in the high
100’s of MHz to GHz range. The use of such high performance
embedded processors has meant that memory access times
have become a significant bottleneck, necessitating the use
of cache to tackle the increasing gap between processor and
memory speeds.

In the majority of research papers on fixed priority pre-
emptive scheduling an assumption is made that the costs
of pre-emption can either be neglected or sub-summed into
the worst-case execution time of each task. With today’s
high performance embedded processors, pre-emption costs can
make up a significant proportion of each task’s execution time.
Such costs cannot be neglected nor is it necessarily viable to
simply subsume them into worst-case execution times, as this
can lead to a pessimistic overestimation of response times.

In this paper, we consider the costs incurred when a pre-
empting task evicts useful cache blocks of a pre-empted task.
These useful cache blocks subsequently need to be reloaded
after the pre-empted task resumes execution, introducing an
additional cache related pre-emption delay (CRPD).

Non-pre-emptive scheduling is one way of avoiding such
cache-related pre-emption costs; however, disabling pre-
emption is often not an option. Systems that include tasks or
interrupt handlers with short deadlines typically cannot disable
pre-emption for the full duration of each task’s execution.
An alternative approach is co-operative scheduling, with re-
scheduling only possible at specific pre-emption points within
each task, or after a pre-determined time has elapsed, thus
dividing each task into a series of non-pre-emptable sections.
Recently, significant progress has been made in this area,
with algorithms designed to make an optimal selection of
pre-emption points [10, 11]. These algorithms minimise the
overall cost of pre-emption for each task while maintaining the
schedulability of the taskset as a whole. However, difficulties
remain, for example in determining the placement of pre-
emption points when the code includes branches and loops.

Exact response time analysis for fixed priority pre-emptive
systems was developed during the 1980’s and 1990’s and sub-
sequently refined into a set of engineering techniques [20, 5,
19]. However, basic response time analysis does not consider
cache-related pre-emption costs explicitly. Explicit integration
of pre-emption costs has previously been considered in a
number of ways: analyzing the effect of the pre-empting
task [15, 32], the effect on the pre-empted task [22], or a
combination of both [30, 31]. With later refinements giving
an upper bound on the number of pre-emptions [27].

In fixed priority pre-emptive systems, there are a number
of ways of managing task priorities that can be used to
reduce the number of pre-emptions and hence the overall pre-
emption costs. These include; non-pre-emption groups [18],
pre-emption thresholds [21, 28, 33], and FP-FIFO schedul-
ing [25], which is supported by a large number of real-time op-
erating systems, including the Linux kernel (SCHED FIFO).

In this paper, we build upon previous work that integrates
pre-emption costs into response time analysis for fixed priority
pre-emptive scheduling. Section II introduces the scheduling
model, terminology, and notation used. In Section III, we
review existing approaches to integrating pre-emption costs
into response time analysis. Building on the insights gained
from this review, Section IV introduces the new ECB-Union
approach to computing pre-emption costs. The ECB-Union
approach complements an existing UCB-Union approach. We
combine the two into a simple composite that dominates

both. In Section V, we extend our analysis to systems where
tasks can access resources in mutual exclusion, in the process
resolving omissions in existing models of pre-emption delays.
A case study in Section VI and an empirical evaluation in
Section VII demonstrate the effectiveness of the ECB-Union
and combined approaches for a wide range of different task
parameters and cache configurations. Section VIII concludes
with a summary of the main contributions of the paper.

The research in this paper focuses on fixed priority pre-
emptive scheduling with unique priority levels; however, the
approaches derived are also applicable to FP-FIFO scheduling.
Extension to FP-FIFO scheduling is described in Appendix A.

II. Task model, Terminology, and Notation

We are interested in an application executing under a
fixed priority pre-emptive scheduler on a single processor.
The application is assumed to comprise a static set of n
tasks (τ1, τ j, . . . , τn), each assigned a fixed priority. We use
the notation hp(i) (and lp(i)) to mean the set of tasks with
priorities higher than (lower than) that of τi. Similarly, we
use the notation hep(i) (and lep(i)) to mean the set of tasks
with priorities higher than or equal to (lower than or equal to)
that of τi. We consider systems where each task has a unique
priority.

Application tasks may arrive either periodically at fixed
intervals of time, or sporadically after some minimum inter-
arrival time has elapsed. Each task, is characterized by: its
relative deadline Di, worst-case execution time Ci, minimum
inter-arrival time or period Ti and release jitter Ji, defined
as the maximum time between the task arriving and it being
released (ready to execute). It is assumed that once a task
starts to execute it will never voluntarily suspend itself. The
processor utilization Ui of task τi is given by Ci/Ti. The total
utilization U of a taskset is the sum of the individual task
utilizations. The worst-case response time Ri of a task τi,
is the longest time from it becoming ready to execute to it
completing execution. A task is referred to as schedulable if its
worst-case response time is less than or equal to its deadline
less release jitter (Ri ≤ Di − Ji). A taskset is referred to as
schedulable if all of its tasks are schedulable.

In Section III and Section IV we assume that tasks are
independent. In Section V, we relax this restriction, permitting
tasks to access shared resources in mutual exclusion according
to the Stack Resource Policy (SRP) [8]. As a result of the
operation of the SRP, a task τi may be blocked by lower
priority tasks for at most Bi, referred to as the blocking time.

In our analysis of cache related pre-emption delays, we use
aff(i, j) to mean the set of tasks that can not only execute
between the release and completion of task τi and so affect its
response time, but can also be pre-empted by task τ j. For the
basic task model, without shared resources, aff(i, j) = hep(i)∩
lp(j).

With respect to a given system model, a schedulability test is
said to be sufficient if every taskset it deems to be schedulable
is in fact schedulable. Similarly, a schedulability test is said to
be necessary if every taskset it deems to be unschedulable is in

fact unschedulable. Tests that are both sufficient and necessary
are referred to as exact.

A schedulability test A is said to dominate another schedu-
lability test B if all of the tasksets deemed schedulable by
test B are also deemed schedulable by test A, and there
exist tasksets that are schedulable according to test A but not
according to test B. Schedulability tests A and B are said
to be incomparable if there exists tasksets that are deemed
schedulable by test A and not by test B and also tasksets that
are deemed schedulable by test B and not by test A.

Preemption Costs

We now extend the sporadic task model introduced above to
include pre-emption costs. To this end, we need to explain how
pre-emption costs can be derived. To simplify the following
explanation and examples, we assume direct-mapped caches.

The additional execution time due to pre-emption is mainly
caused by cache eviction: the pre-empting task evicts cache
blocks of the pre-empted task that have to be reloaded after
the pre-empted task resumes. The additional context switch
costs due to the scheduler invocation and a possible pipeline-
flush can be upper-bounded by a constant. We assume that
these constant costs are already included in Ci. Hence, from
here on, we use pre-emption cost to refer only to the cost
of additional cache reloads due to pre-emption. This cache-
related pre-emption delay (CRPD) is bounded by g × BRT
where g is an upper bound on the number of cache block
reloads due to pre-emption and BRT is an upper-bound on the
time necessary to reload a memory block in the cache (block
reload time).

To analyse the effect of pre-emption on a pre-empted task,
Lee et al. [22] introduced the concept of a useful cache block:
A memory block m is called a useful cache block (UCB) at
program point P, if (i) m may be cached at P and (ii) m may
be reused at program point Q that may be reached from P
without eviction of m on this path. In the case of pre-emption
at program point P, only the memory blocks that (i) are cached
and (ii) will be reused, may cause additional reloads. Hence,
the number of UCBs at program point P gives an upper bound
on the number of additional reloads due to a pre-emption
at P. The maximum possible pre-emption cost for a task is
determined by the program point with the highest number of
UCBs. Note that this bound can be improved by counting the
j-th highest number of UCBs at the j-th pre-emption. A tighter
definition is presented in [1]; however, in this paper we need
only the basic concept.

The worst-case impact of a pre-empting task is given by
the number of cache blocks that the task may evict during its
execution. Recall that we consider direct-mapped caches: in
this case, loading one block into the cache may result in the
eviction of at most one cache block. A memory block accessed
during the execution of a pre-empting task is referred to as an
evicting cache block (ECB). Accessing an ECB may evict a
cache block of a pre-empted task.

In this paper, we represent the sets of ECBs and UCBs as

sets of integers with the following meaning:

s ∈ UCBi ⇔ τi has a useful cache block in cache-set s

s ∈ ECBi ⇔ τi may evict a cache block in cache-set s

A bound on the pre-emption cost due to task τ j directly
pre-empting τi is therefore given by BRT · |UCBi ∩ ECB j|.
Precise computation is more complex as different program
points may exhibit different sets of UCBs. Hence, the worst-
case pre-emption delay considering a pre-empting and pre-
empted task may not necessarily occur at the pre-emption
point with the highest number of UCBs—see [3] for a detailed
description of the computation of pre-emption costs. Note that
the simplification we apply, using ECBi and UCBi, does not
impact the correctness of the equations.

Note that a separate computation of the pre-emption cost is
restricted to architectures without timing anomalies [24] but
is independent of the type of cache used, i.e. data, instruction
or unified cache.

Set-Associative Caches: In the case of set-associative
LRU caches1, a single cache-set may contain several useful
cache blocks. For instance, UCB1 = {1, 2, 2, 2, 3, 4} means that
task τ1 contains 3 UCBs in cache-set 2 and one UCB in each
of the cache sets 1, 3 and 4. As one ECB suffices to evict all
UCBs of the same cache-set, multiple accesses to the same
set by the pre-empting task does not need to appear in the set
of ECBs. Hence, we keep the set of ECBs as used for direct-
mapped caches. A bound on the CRPD in the case of LRU
caches due to task τi directly pre-empting τ j is thus given by
the intersection UCB j ∩

′ ECBi = {m|m ∈ UCB j : m ∈ ECBi},
where the result is also a multiset that contains each element
from UCB j if it is also in ECBi. A precise computation of
the CRPD in the case of LRU caches is given in [4]. In
this paper, we assume direct-mapped caches. Note that all
equations provided within this paper are for direct-mapped
caches, they are also valid for set-associative LRU caches with
the above adaptation to the set-intersection.

III. Response Time Analysis for pre-emptive Systems
Response time analysis [5, 20] for fixed priority pre-emptive

scheduling calculates the worst-case response time Ri of task
τi, using the following equation.

Ri = Ci + Bi +
∑
∀ j∈hp(i)

⌈
Ri + J j

T j

⌉
(C j) (1)

Note that the worst-case response time appears on both
the LHS and the RHS of the equation. As the RHS is a
monotonically non-decreasing function of Ri, the equation can
be solved using fixed point iteration: Iteration starts with an
initial value for the response time, typically r0

i = Ci + Bi,
and ends either when rn+1

i = rn
i in which case the worst-

case response time Ri is given by rn
i or when ri > Di − Ji

in which case the task is unschedulable. We note that (1) does
not explicitly include pre-emption costs.

1The concept of UCBs and ECBs cannot be applied to FIFO or PLRU
replacement policies as shown in [13].

A. Existing Analyses including pre-emption costs

Equation (1) can be extended by γi, j representing the pre-
emption cost due to each job of a higher priority pre-empting
task τ j executing within the worst-case response time of task
τi [15]:

Ri = Ci +
∑
∀ j∈hp(i)

⌈
Ri + J j

T j

⌉
(C j + γi, j) (2)

Note that task τ j does not necessarily pre-empt task τi directly;
a nested pre-emption is also possible. Any pre-emption by task
τ j of a task τk that executes while τi is pre-empted may also
increase the response time of task τi. The problem of obtaining
a valid yet tight upper bound on the pre-emption costs is made
difficult by the effects of nested pre-emption, as a pre-empting
task may evict useful cache-blocks belonging to a number of
pre-empted tasks.

The precise meaning of γi, j and its computation depends
on the approach used. Below, we review a number of existing
approaches and discuss their advantages and disadvantages.

ECB-Only

Busquets and Wellings [15] and later Tomiyama and
Dutt [32], used the ECBs of the pre-empting task to bound
the pre-emption costs:

γecb
i, j = BRT · |ECB j| (3)

In this case, γi, j represents the worst-case effect of task τ j on
any arbitrary lower priority task, independent of such a task’s
actual UCBs.

UCB-Only

By contrast, Lee et al. [22] used the number of UCBs
to bound the pre-emption costs. Here, however one has to
correctly account for nested pre-emptions. The cost of τ j pre-
empting some task τk of intermediate priority may be higher
than that of τ j pre-empting τi. Thus, the pre-emption cost due
to a job of task τ j executing during the response time of task
τi is only bounded by the maximum number of UCBs over
all tasks that may be pre-empted by τ j and have at least the
priority of τi (i.e. tasks from the set aff(i, j) = hep(i) ∩ lp(j)).

γucb
i, j = BRT · max

∀k∈aff(i, j)
{|UCBk |} (4)

The disadvantage of the ECB-Only and UCB-Only ap-
proaches is clear: considering only the pre-empted tasks or
alternatively only the pre-empting tasks leads to an over-
approximation. Not every UCB may be evicted during pre-
emption, and not every ECB may evict a UCB. This is
illustrated in Figure 1.

The LHS of Figure 1 shows the scenario leading to the
worst-case number of cache reloads due to pre-emption, the
RHS shows the set of cache sets accessed by each task (ECB)
and the set of cache sets that may contain a useful cache block
(UCB). Note the example assumes a 4-set cache memory.

Figure 1 shows an example taskset that leads to an overes-
timation when the pre-emption cost is estimated using (3) or

(4). Task τ1 accesses blocks in cache sets 1 and 2. Task τ2
accesses blocks in cache sets 1, 2, 3 and 4. However, only sets
3 and 4 may contain useful cache blocks, hence a pre-emption
of task τ2 by task τ1 never evicts any useful cache blocks; and
so there are no cache reloads due to pre-emption. However,
(4) and (3) account for 2 additional reloads; an overestimation
of the pre-emption cost.

0 1 2 3 4

τ1

τ2

UCBi ECBi

{1, 2} {1, 2}

{3, 4} {1, 2, 3, 4}

Execution

Fig. 1. Taskset {τ1, τ2} with C1 = 1, C2 = 2 and block reload time 1.
Response time analysis of task τ2: only counting the number of possibly
evicted UCBs (4) or possibly evicting ECBs (3) leads to a pre-emption cost
of 2, whereas the actual pre-emption cost is 0.

Since both (3) and (4) can over-estimate the actual pre-
emption cost, combining both UCBs and ECBs might be
expected to result in precise bounds. However, the naive
computation γi, j = BRT · |UCBi ∩ ECB j| is optimistic and
thus cannot be used. It may lead to underestimation in two
cases: when the cost of task τ j pre-empting a task τk of
intermediate priority is higher than that of τ j pre-empting τi

(see Figure 2(a)) and when the execution of τ j may evict useful
cache blocks of both task τi and of task τk (see Figure 2(b)).

0 1 2 3 4 5 6 7 8 9 10 11

τ1

τ2

τ3

UCBi ECBi

∅ {1, 2}

{1} {1, 2}

{3, 4} {1, 2, 3, 4}

Execution Pre-emption Delay

(a) τ1 pre-empting τ2 causes higher costs than τ1 pre-empting τ3.

0 1 2 3 4 5 6 7 8

τ1

τ2

τ3

UCBi ECBi

∅ {2, 3}

{1, 2} {1, 2}

{3, 4} {1, 2, 3, 4}

(b) Nested pre-emption: τ1 pre-empting τ2 pre-empting τ3, causes higher
costs than any non-nested pre-emption.

Fig. 2. Two taskets {τ1, τ2, τ3} with C1 = 1, C2 = 2, C3 = 3, and a block
reload time of 1.

UCB-Union

Tan and Mooney [31] considered both the pre-empted and
the pre-empting task. They take the union of all possible
affected useful cache blocks and combine this with the set

of ECBs of the pre-empting task.

γtan
i, j = BRT ·

∣∣∣∣∣∣∣∣
⋃

∀k∈aff(i, j)

UCBk ∩ ECB j

∣∣∣∣∣∣∣∣ (5)

This UCB-Union approach dominates the ECB-only ap-
proach since:

γecb
i, j ≥ γ

tan
i, j

but may be worse than the UCB-only approach in some cases.
Consider the taskset shown in Figure 3, the values of γi, j for
the response time analysis of task τ3 are as follows:

γtan
3,1 = |{(UCB2∪UCB3)∩ECB1}| = |{1, 2, 3, 4}∩{1, 2, 3, 4}| = 4

γtan
3,2 = |{(UCB3) ∩ ECB2}| = |{3, 4} ∩ {1, 2, 3, 4}| = 2

Given that each task is executed at most once, the total
computed pre-emption cost is 6. However, the actual pre-
emption cost is only 4: either UCBs in cache sets {1, 2, 3, 4}
have to be reloaded (in the case of nested pre-emption) or
UCBs in cache sets {3, 4} are reloaded twice (in the case of
consecutive pre-emption of τ3 by τ1 and then by τ2).

0 1 2 3 4 5 6 7 8 9 10

τ1

τ2

τ3

UCBi ECBi

∅ {1, 2, 3, 4}

{1, 2} {1, 2, 3, 4}

{3, 4} {1, 2, 3, 4}

Fig. 3. Taskset {τ1, τ2, τ3} with C1 = 1, C2 = C3 = 2, and a block reload
time of 1. Equation (5) computes total pre-emption costs of 6, whereas the
actual cost is only 4.

Note that in the case of set-associative caches, Tan and
Mooney [31] account only for those cache blocks that are
actually evicted due to pre-emption. We note that this can be
optimistic, as shown in [13].

Staschulat’s Formula

Staschulat et al. [30] also combine information about the
pre-empting and the pre-empted task. Their analysis is ex-
tended to account for the fact that each additional pre-emption
of task τi may result in a smaller pre-emption cost than the
last. (Their approach is an improvement over that of Petters
and Färber [26]). The basic response time analysis used differs
from (2): γi, j does not refer to the cost of a single pre-emption,
but instead to the total cost of all pre-emptions due to jobs of
task τ j executing within the response time of task τi.

Ri = Ci +
∑
∀ j∈hp(i)

(⌈
Ri + J j

T j

⌉
C j + γsta

i, j

)
(6)

Staschulat et al. compute the maximum number of pre-
emptions q, including nested pre-emptions, which may impact
the response time of task τi due to cache blocks evicted by
task τ j. Thus q is given by the sum of the maximum number

of jobs of task τ j and tasks of lower priority than τ j but higher
priority than τi that can execute during the response time Ri

of task τi

q =
∑

∀k∈hp(i)∩(lp(j)∪{ j})

Ek(Ri) (7)

where Ek(Ri) is used to denote the maximum number of
jobs of task τk that can execute during response time Ri. For
our task model, Ek(Ri) = d(Ri + Jk)/Tke. The total pre-emption
cost γsta

i, j due to jobs of task τ j pre-empting during the response
time of task τi is then bounded by the q largest costs of task τ j

pre-empting jobs of any lower priority task τk ∈ hep(i)∩ lp(j)
that can execute during the response time of task τi. As each
job of such a task τk may execute up to Ek(Ri) times during
Ri, and each of those jobs could potentially be pre-empted at
most E j(Rk) times by task τ j, the E j(Rk) highest pre-emption
costs of τ j directly pre-empting τk must be considered Ek(Ri)
times:

γsta
i, j = BRT ·

q∑
l=1

|Ml| (8)

where Ml is the l-th largest element from the multiset M

M =
⋃

k∈hep(i)∩lp(j)

 ⋃
Ek(Ri)

{
(UCBk ∩ ECB j)n|n ∈ [1; E j(Rk)]

}
(9)

and (UCBk ∩ ECB j)n gives the n-th highest pre-emption cost
for task τ j pre-empting task τk. Note that M is a multiset and
the union over Ek(Ri) means that the set of values for τk are
repeated Ek(Ri) times.

The drawback of this approach is that the number of
pre-emptions taken into account strongly over-estimates the
number of pre-emptions that have an actual influence on the
response time; particularly when there are a large number of
tasks. In addition, the reduction in the pre-emption costs for
a sequence of pre-emptions is typically rather limited ([11]
shows that the maximal pre-emption cost can occur at various
program points within a task’s execution). The program point
P in a task which exhibits the highest number of UCBs often
occurs within a loop, thus, it has to be taken into account as
often as the loop iterates. In addition, program points close to
P will often have a similar number of UCBs. We note that
Staschulat et al. also present an improvement to their analysis
in [30]; however, the problem of strongly over-estimating the
number of pre-emptions remains.

IV. ECB-Union Approach

We now introduce a new ECB-Union approach to computing
pre-emption costs. To account for nested pre-emptions, we
compute the union of all ECBs that may affect a pre-empted
task. The intuition here is that direct pre-emption by task τ j

is represented by the pessimistic assumption that task τ j has
itself already been pre-empted by all of the tasks of higher
priority and hence may result in eviction of

⋃
h∈hp(j)∪{ j} ECBh

γnew
i, j = BRT · max

∀k∈aff(i, j)

∣∣∣∣∣∣∣∣UCBk ∩

⋃
h∈hp(j)∪{ j}

ECBh

∣∣∣∣∣∣∣∣
 (10)

Task τ j may directly pre-empt any task τk ∈ aff(i, j) impact-
ing the response time of task τi. Thus taking the maximum
over all of the tasks in aff(i, j) ensures that the pre-emption
cost for the highest number of evicted useful cache blocks
is considered. Note we use hp(j) ∪ { j} to mean task τ j and
all tasks of higher priority than task τ j, rather than hep(j).
This is because the two sets are different in the more general
case where tasks can share priority levels, see Appendix A
for further details. Note that (10) is combined with (2) to
determine task response times.

The ECB-Union approach (10) dominates the UCB-only
approach, since:

γucb
i, j ≥ γ

new
i, j

The ECB-Union approach is incomparable with the UCB-
Union approach [31]. Figure 3 provides an example where the
ECB-Union approach outperforms the UCB-Union approach:
here the ECB-Union approach covers both a nested pre-
emption (τ3 pre-empted by τ2 which is pre-empted by τ1)
and consecutive pre-emption (of τ3 by τ1 and τ2), obtaining
for each pre-emption a cost of 2 and thus, a total cost of 4.
In contrast, the UCB-Union approach gives a total cost of 6.

γnew
3,1 = max

∀k∈{2,3}
{|UCBk ∩ ECB1|}

= max {|UCB2 ∩ ECB1|, |UCB3 ∩ ECB1|}

= max {|{1, 2}| , |{3, 4}|} = 2

γnew
3,2 = max

∀k∈{3}
{|UCBk ∩ (ECB1 ∩ ECB2)|}

= |UCB3 ∩ (ECB1,ECB2)|
= |{3, 4} ∩ {1, 2, 3, 4}| = |{3, 4}| = 2

Figure 4 provides an example where the UCB-Union ap-
proach outperforms the ECB-Union approach. Here, for the
latter approach, the pre-emption costs increasing the response
time R3 of task τ3 are computed as follows:

γnew
3,1 = max

∀k∈{2,3}
{|UCBk ∩ ECB1|}

= max {|UCB2 ∩ ECB1|, |UCB3 ∩ ECB1|}

= max {|∅| , |{1, 2}|} = 2
γnew

3,2 = max
∀k∈{3}

{|UCBk ∩ (ECB1 ∩ ECB2)|}

= |UCB3 ∩ (ECB1,ECB2)|
= |{1, 2, 3, 4} ∩ {1, 2, 3, 4}| = |{1, 2, 3, 4}| = 4

With the ECB-Union approach, the eviction of UCBs of task
τ3 ({1, 2}) are considered twice, even though they must be
reloaded at most once, leading to an over-estimation of the
total pre-emption costs of 6. The UCB-Union approach, in
this case, computes the precise total of 4.

0 1 2 3 4 5 6 7 8 9 10

τ1

τ2

τ3

UCBi ECBi

∅ {1, 2}

∅ {3, 4}

{1, 2, 3, 4} {1, 2, 3, 4}

Fig. 4. Taskset {τ1, τ2, τ3} with C1 = 1, C2 = C3 = 2, and block reload time
1. Equation (10) computes a total pre-emption cost of 6, whereas the actual
cost is only 4.

A. Combined Approach

The UCB-Union approach dominates the ECB-Only ap-
proach, similarly the ECB-Union approach dominates the
UCB-Only approach. Given that the UCB-Union approach
(5) and the ECB-Union approach (10) are incomparable, we
can combine both to deliver a more precise bound on task
response times that, by construction, dominates the use of
either approach alone:

Ri = min(Rtan
i ,Rnew

i) (11)

where Rtan
i is the response time of task τi computed using (5)

and Rnew
i is the response time of task τi computed using (10).

V. Blocking Time

The discussion in Section III and Section IV assumes non-
blocking execution, i.e. no shared resources. In this section,
we relax this restriction, permitting tasks to access mutually
exclusive shared resources according to the Stack Resource
Policy (SRP) introduced by Baker [8], extending the Priority
Ceiling Protocol of Sha et al. [29].

The SRP associates a ceiling priority with each resource.
This ceiling priority is equal to the highest priority of any
task that can access the resource. At run-time, when a task
accesses a resource, its priority is immediately increased to the
ceiling priority of the resource. Thus SRP bounds the amount
of blocking Bi which task τi is subject to, to the maximum
time for which any lower priority task holds a resource that
is shared with task τi or any other task of equal or higher
priority. SRP ensures that a task can only ever be blocked
prior to actually starting to execute.

We note that when a lower priority task τk locks a resource
and so blocks task τi, it can still be pre-empted by tasks with
priorities higher than that of the ceiling priority of the resource.
Bi does not account for the additional pre-emption cost due to
such pre-emptions.

Previous work integrating pre-emption costs into response
time analysis [15, 22, 30, 31] extend (2) to include blocking
via the simple addition of the blocking factor Bi:

Ri = Ci + Bi +
∑
∀ j∈hp(i)

⌈
Ri + J j

T j

⌉
(C j + γi, j) (12)

In the case of Busquets and Wellings analysis [15], this is
correct, as the pre-emption cost is accounted for only via the

ECBs of the pre-empting tasks and is therefore unaltered by
the addition of resource accesses that could potentially also be
pre-empted. In contrast, [22, 30, 31] make use of the UCBs of
pre-empted tasks. If, as is the case with the SRP, pre-emption
can still occur during resource access, then these analyses are
optimistic and need to be modified to correctly account for the
additional pre-emption costs that can occur2. The key point is
that the blocking factor Bi does not represent execution of task
τi, but instead represents execution of some resource access
within a lower priority task. Such a resource access may be
pre-empted, during the response time of task τi and therefore
its UCBs need to be taken into account, as illustrated by the
example in Figure 5.

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ2

τ3

Execution Resource access Pre-emption Delay

UCBi ECBi

∅ {1, 2}

∅ {3, 4}

{1, 2} {1, 2, 3, 4}

Fig. 5. Tasks τ2 and τ3 share a common resource x, τ3 starts to execute,
blocks τ2, which is released at time 1, and is pre-empted by τ1. Thus, the
finishing time of τ2 is delayed not only by the time for which τ3 accesses the
resource, but also by the additional pre-emption delay, reloading UCBs {1, 2}
after the resource access of task τ3 is pre-empted by task τ1.

We now extend the ECB-Union and UCB-Union approaches
to take account of blocking. Specifically, we extend the pre-
emption cost equations (10) and (5) to include the UCBs of
tasks in the set b(i, j), where b(i, j) is defined as the set of tasks
with priorities lower than that of task τi that lock a resource
with a ceiling priority higher than or equal to the priority of
task τi but lower than that of task τ j. These tasks can block
task τi, but can also be pre-empted by task τ j. Hence they
need to be included in the set of tasks aff(i, j) whose UCBs
are considered when determining the pre-emption cost γi, j due
to task τ j:

aff(i, j) = (hep(i) ∩ lp(j)) ∪ b(i, j) (13)

Note that the tasks in b(i, j) have lower priorities than task
τi and so cannot pre-empt during the response time of task
τi, hence their ECBs do not need to be considered when
computing γi, j. Using (13) extends the ECB-Union approach
(10) and the UCB-Union approach (5) to correctly account for
pre-emption costs when tasks share resources according to the
SRP.

Revisiting the example given in Figure 5, we observe that as
the set of affected tasks aff(2, 1) now includes task τ3 as well as
task τ2, (5) correctly accounts for the overall pre-emption cost
of 2 due to the resource access of task τ3 being pre-empted
by task τ1 during the response time of task τ2.

We note that in the simplest case of the SRP where tasks

2If all resource accesses are non-pre-emptive, then there are no additional
pre-emption costs to be accounted for.

share resources that are accessed non-pre-emptively (i.e. with
ceiling priorities equal to that of the highest priority task), then
the set of tasks b(i, j) is empty (since no task can pre-empt
during a resource access) and hence the pre-emption cost γi, j

is the same as for the basic task model, with no increase in
pre-emption costs due to blocking.

Although providing valid upper bounds on the pre-emption
costs, the above extension can be pessimistic. This is because
it includes the UCBs of each lower priority task in aff(i, j),
rather than just the UCBs of each resource access within those
tasks. More precise analysis can be obtained by considering
each resource access as a sub-task with its own UCBs, as
explained in the following sub-section.

When determining the blocking factor Bi we cannot use
the resource access execution times as they occur within the
non-pre-emptive execution of each containing task τk. This
is because we must assume that task τk could be pre-empted
immediately before a resource access and any useful cache
blocks evicted. Instead, the execution time of each resource
access must be determined assuming execution of that section
of code with no pre-emption, and starting from the worst-case
initial state.

Finally, we note that it is possible for the SRP to cause push-
through or indirect blocking where a resource access delays
execution of a higher priority task which then executes during
the response time of task τi; however, such behaviour cannot
increase the overall response time of τi beyond that calculated
assuming direct blocking. This is because indirect blocking
removes the possibility of resource access pre-emption, with-
out including the possibility that any additional tasks pre-empt
or are pre-empted, as all other candidates for pre-emption are
already included in the calculations.

A. Refined analysis based on sub-tasks

We now provide more precise analysis of the pre-emption
costs when tasks share resources according to the SRP. We do
so by considering any resource access made by a task τk, that
results in an increase in priority3, as a sub-task of τk executing
at that higher priority. Thus S k,h

x , is a resource access sub-task
of task τk that increases the priority of task τk to that of task
τh, where task τh is the highest priority task that accesses
the same resource, and x is an arbitrary index of resource
accesses. The worst-case execution time of sub-task S k,h

x is
denoted by Ck,h

x . The value of Ck,h
x , is determined assuming

stand-alone execution of S k,h
x , i.e. with no pre-emption and an

unknown initial cache state. We denote the useful cache blocks
of sub-task S k,h

x , by UCBk,h
x , again determined by considering

stand-alone execution.
Under SRP, the maximum blocking time Bi that task τi can

3Under SRP, resource accesses may be nested. An inner nested access does
not result in an increase in task priority if the outer nested access has a
higher ceiling priority. A resource access by the highest priority task that
uses a particular resource similarly does not result in an increase in priority.
Resource accesses that do not change the priority of a task can be safely
ignored in response time analysis.

be subject to is given by:

Bi = max
∀S k,h

x :k∈lp(i)∧h∈hep(i)
(Ck,h

x) (14)

The ceiling priority that each sub-task S k,h
x executes at

ensures mutually exclusive resource access; however, higher
priority tasks (∈ hp(h)) can still pre-empt S k,h

x . Bi does not
account for the additional cache related pre-emption cost of
such a pre-emption.

We now extend the ECB-Union and the UCB-Union [31]
approaches to take account of both blocking, and the addi-
tional pre-emption costs which may occur when a resource
access sub-task is pre-empted. Specifically, we extend the pre-
emption cost equations (5) and (10) to include the UCBs of
sub-tasks in the set b(i, j), where b(i, j) is defined as the set of
sub-tasks each belonging to a task of priority lower than that
of task τi that lock a resource with a ceiling priority higher
than or equal to the priority of task τi but lower than that of
task τ j .

b(i, j) = {∀sk,h
x : k ∈ lp(i) ∧ h ∈ hep(i) ∩ lp(j)} (15)

These sub-tasks can block task τi , but can also be pre-empted
by task τ j, hence they need to be included in the set of tasks
aff(i, j) whose UCBs are considered when determining the pre-
emption cost γi, j:

aff(i, j) = (hep(i) ∩ lp(j)) ∪ b(i, j) (16)

Note that the tasks in b(i, j) cannot pre-empt any task in
the set hep(k) (hep(k) ⊃ hep(i)), hence they cannot pre-empt
during the response time of task τi and so their ECBs do not
need to be considered when computing γi, j.

Using (16) extends the ECB-Union approach (8) and the
UCB-Union approach [31] (5) to account for the additional
pre-emption costs when tasks share resources according to the
SRP. Because this analysis includes the UCBs of sub-tasks
(e.g. sk,h

x) rather than tasks (e.g. τk) and UCBk,h
x ⊆ UCBk, it

dominates the earlier analysis based on task rather than sub-
task UCBs. The above analysis, while an improvement, is still
pessimistic in that it independently maximizes both (i) the
blocking factor due to all of the potentially blocking resource
access sub-tasks, and (ii) the pre-emption costs due to pre-
emption of any of those sub-tasks.

In practice the SRP ensures that any job of task τi can only
be blocked by a single resource access sub-task. An alternative
and more precise approach is therefore to evaluate the response
time Rx,i of task τi for every potentially blocking sub-task
sk,h

x : k ∈ lp(i) ∧ h ∈ hep(i) individually; with the blocking
factor given by Bi,x = Ck,h

x and the pre-emption delay given
by:

γ
help−1
i, j,x =

∣∣∣∣∣∣∣UCBk,h

x ∩
⋃

m∈hp(j)∪{ j}
ECBm

∣∣∣∣∣∣∣
 if h ∈ lp(j)

0 otherwise

γ
help−2
i, j,x = max

∀k∈aff(i, j)

∣∣∣∣∣∣∣∣UCBk ∩

⋃
m∈hp(j)∪{ j}

ECBm

∣∣∣∣∣∣∣∣

γnew
i, j = max

{
γ

help−1
i, j,x , γ

help−2
i, j,x

}
(17)

(where aff(i, j) does not include b(i, j)) and then take the
maximum response time obtained over all of the blocking sub-
tasks:

Ri = max
∀S k,h

x :k∈lp(i)∧h∈hep(i)

{
Ri,x

}
(18)

VI. Case Study

In this section, we evaluate the effectiveness of the different
approaches based on a case study. The worst-case execution
times and the set of useful cache blocks and evicting cache
blocks have been derived from the Mälardalen benchmark
suite4, see Table I, where the values are taken from [3]. The
target architecture is an ARM7 processor5 with direct-mapped
instruction cache of size 4kB with a line size of 8 Bytes (and
thus, 256 cache sets) and a block reload time of 8µs. The
ARM7 features an instruction size of 4 Bytes.

WCET UCBs ECBs
bs 445 5 35
minmax 504 9 79
fac 1252 4 24
fibcall 1351 5 24
insertsort 6573 10 41
loop3 13449 4 817
select 17088 15 151
qsort-exam 22146 15 170
fir 29160 9 105
sqrt 39962 14 477
ns 43319 13 64
qurt 214076 14 484
crc 290782 14 144
matmult 742585 23 100
bsort100 1567222 35 62

TABLE I
Execution times and number of UCBs and ECBs for a selection of

benchmarks from theMälardalen Benchmark Suite.

We note that although the case study tasks do not represent a
set of tasks scheduled on an embedded real-time system, they
do represent typical components of real-time applications and
thus deliver meaningful values. We created a taskset from the
above data by assigning periods and implicit deadlines such
that all 15 tasks had equal utilization6. The periods where
generated by multiplying each execution time by a constant c
(∀i : Ti = c ·Ci). We varied c from 15 upwards hence varying
the utilization of the taskset from 1.0 downwards. The tasks

4http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
5http://www.arm.coms/products/CPUs/families/ARM7Family.html
6This is an entirely arbitrary choice. Evaluation with randomly generated

taskset parameters is reported in section VII.

were assigned priorities in deadline monotonic priority order7.
Table II lists the breakdown utilization; the maximum

utilization at which a scaled version of the case study taskset
was deemed schedulable by each approach.

Analysis Breakdown utilization:
No Pre-emption Cost 0.95

Combined 0.767
ECB-Union 0.767
UCB-Only 0.75

UCB-Union 0.698
ECB-Only 0.612
Staschulat 0.508

TABLE II
Case study taskset: breakdown utilization for different approaches.

Staschulat’s approach performs worst, with a breakdown
utilization of 0.508. Equation (7) computes the number of pre-
emptions taken into account. For the effect of task τ1 (bs) to
task τ5 (insertsort), only the 8 highest costs of τ1 pre-empting
any task from τ2 to τ5 need to be considered. However, for the
effect of task τ1 (bs) to task τ15 (bsort100), the 47362 highest
costs need to be considered. Although the single pre-emption
costs (for τi pre-empted by τ j) are much smaller, the total cost
is very pessimistic.

The ECB-Union approach and the UCB-only approach
perform best, with breakdown utilizations of 0.767 and 0.75.
As the cache contention is high (3 out of the 15 tasks fill
the whole cache), a single pre-emption often evicts all of the
UCBs of the pre-empted task(s). In addition, the total number
of ECBs is much higher than the total number of UCBs hence
the ECB-only approach (3) is much more pessimistic than
the UCB-only approach (4) and so has a lower breakdown
utilization of 0.612. As a consequence, the ECB-Union ap-
proach (10) outperforms the UCB-Union approach (5) which
has a breakdown utilization of 0.698. The combination of
both approaches (11) does not improve upon the ECB-Union
approach. Finally, (1) deems the case study taskset schedulable
up to a utilization of 0.95 ignoring pre-emption costs.

VII. Evaluation
In this section, we evaluate the effectiveness of the differ-

ent approaches to pre-emption cost computation on a large
number of tasksets with varying cache configurations and
varying taskset parameters. The task parameters used in our
experiments were randomly generated as follows:
• The default taskset size was 10.
• Task utilizations were generated using the UUnifast [12]

algorithm.
• Task periods were generated according to a log-uniform

distribution with a factor of 100 difference between
the minimum and maximum possible task period and a
minimum period of 5ms. This represents a spread of task

7Deadline monotonic priority order is optimal in this case only when pre-
emption costs are zero.

periods from 5ms to 500ms, as found in most automotive
and aerospace hard real-time applications.

• Task execution times were set based on the utilization and
period selected: Ci = Ui · Ti.

• Task deadlines were implicit8, i.e., Di = Ti.
• Priorities were assigned in deadline monotonic order.

The following parameters affecting pre-emption costs were
also varied, with default values given in parentheses:
• The number of cache-sets (CS = 256).
• The block-reload time (BRT = 8µs)
• The cache usage of each task, and thus, the number of

ECBs, were generated using the UUnifast [12] algorithm
(for a total cache utilization CU = 10). In such a case,
UUnifast may produce values larger than 1 which means
a task fills the whole cache.

• For each task, the UCBs were generated according to
a uniform distribution ranging from 0 to the number of
ECBs times a reuse factor: [0,RF · |ECB|]. The factor
RF was used to adapt the assumed reuse of cache-sets
to account for different types of real-time applications,
for example, from data processing applications with little
reuse up to control-based applications with heavy reuse.

Staschulat’s approach exploits the fact that for the i-th pre-
emption only the i-th highest number of UCBs has to be
considered. As our case study and other measurements [11]
have shown, a significant reduction typically only occurs at a
high number of pre-emptions. For the purposes of evaluation,
for Staschulat’s approach, we simulated what in practice is
likely to be an optimistic reduction: reducing the number of
UCBs per pre-emption by one each time.

In each experiment the taskset utilization not including pre-
emption cost was varied from 0.025 to 0.975 in steps of
0.025. For each utilization value, 1000 valid tasksets were
generated and the schedulability of those tasksets determined
using the appropriate pre-emption cost computation integrated
into response time analysis.

A. Base configuration
We conducted experiments varying the number of tasks, the

cache-size (i.e. number of cache-sets (CS)), the block reload
time (BRT), the cache utilization (CU) and the reuse factor
(RF). As a base configuration we used the default values of
10 tasks, a cache of 256 cache-sets, a block-reload time of 8µs,
a reuse factor of 30% and a cache-utilization of 10. The latter
two parameters were chosen according to the actual values
observed in the case-study. Figure 6 illustrates the performance
of the different approaches for this base configuration. The
graph also shows a line marked Simulation-UB. This refers to
the use of simulation to form a necessary schedulability test.
We simulated execution and pre-emption of the tasks starting
from near simultaneous release. (The tasks were released in
order, lowest priority first, to increase the number of pre-
emptions considered). If any task missed its deadline, then the

8Evaluation for constrained deadlines, i.e., Di ∈ [2Ci; TI] gives broadly sim-
ilar results although fewer tasksets are deemed schedulable by all approaches,
see Appendix B).

taskset was proven to be unschedulable w.r.t. the pre-emption
cost model used9, thus providing a valid upper bound on
taskset schedulability including pre-emption costs. Note that
the lines on the graphs appear in the same order as they are
described in the legend. The graphs are best viewed online in
colour.

Fig. 6. Evaluation of base configuration. Number of tasksets deemed
schedulable at the different total utilizations.

For each approach, we determined the average breakdown
utilization for the tasksets generated for the base configuration,
see Table III. These results show that the ECB-Union, and
Combined approaches significantly improve upon the perfor-
mance of previous methods.

Analysis Average Breakdown Utilization:
No Preemption Cost 0.93

Combined 0.64
ECB-Union 0.62
UCB-Union 0.57
UCB-Only 0.55
ECB-Only 0.39
Staschulat 0.35

TABLE III
Average breakdown utilization of base configuration tasksets for each

approach.

Exhaustive evaluation of all combinations of cache and
taskset configuration parameters is not possible. We therefore
fixed all parameters except one and varied the remaining
parameter in order to see how performance depends on this
value. The graphs below show the weighted schedulability
measure Wy(p) [9] for schedulability test y as a function of
parameter p. For each value of p, this measure combines data
for all of the tasksets τ generated for all of a set of equally

9The simulation assumed that any partial execution of a task evicted all its
ECBs and used all its UCBs

spaced utilization levels. Let S y(τ, p) be the binary result (1 or
0) of schedulability test y for a taskset τ and parameter value
p then:

Wy(p) = (
∑
∀τ

u(τ) · S y(τ, p))/
∑
∀τ

u(τ) (19)

where u(τ) is the utilization of taskset τ. This weighted
schedulability measure reduces what would otherwise be a 3-
dimensional plot to 2 dimensions [9]. Weighting the individual
schedulability results by taskset utilization reflects the higher
value placed on being able to schedule higher utilization
tasksets.

B. Cache Utilization & Cache-Reuse

Cache utilization and cache-reuse are the most important
factors for pre-emptively scheduled systems. If all tasks fit
into the cache, i.e. the cache utilization is less than one or
there is no cache-reuse at all, then no additional cache-related
pre-emption delays occur. The other extreme is when each
task completely fills the cache. In this case, each UCB must
be assumed to be evicted, and hence the overall pre-emption
delay depends solely on the number of UCBs.

Fig. 7. Weighted schedulability measure; varying cache utilization from 0
to 20, in steps of 2

Figure 7 shows the weighted schedulability measure for
each approach as a function of the cache utilization. At a
low cache utilization, only a few UCBs are actually evicted.
The set of ECBs per task is low, and often smaller than the
number of UCBs of all possibly pre-empted tasks. Thus, an
upper bound on the possibly evicted UCBs per pre-empting
task (as computed by the UCB-Union approach) is slightly
pessimistic, while the ECB-Union approach is in this case
more pessimistic. The situation changes with increased cache
utilization. As each task uses a larger proportion of the
whole cache on average, the UCB-Union approach becomes
significantly more pessimistic than the ECB-Union approach.

Figure 8, shows the weighted schedulability measure for
each approach as a function of the reuse factor. At low values
of the reuse factor, the set of UCBs per task is low compared to

the ECBs, and so the UCB-Union method is more pessimistic
than the ECB-Union method, while at high values of the
reuse factor, the opposite applies as the set of UCBs for
each task becomes similar to its set of ECBs. Observe that in
Figure 8 these two lines cross at a medium level of reuse, while
the Combined approach outperforms both, providing the best
performance in all cases. Since the reuse factor only affects the
number of UCBs, the performance of the ECB-only approach
is independent of the reuse factor. As expected, performance
of the ECB-only approach is relatively poor at low levels of
reuse, but competitive at high levels.

Fig. 8. Weighted schedulability measure; varying reuse factor from 0% to
100%, in steps of 10%

C. Number of Tasks

In this experiment, we varied the number of tasks with the
other parameters fixed at their default values. Figure 9 shows

Fig. 9. Weighted schedulability measure; varying number of tasks from
2 = 21 to 26 = 64.

that the more tasks there are, the less likely a taskset of a

given utilization is to be schedulable. This is because with
an increased number of tasks the number of pre-emptions
and hence the overall pre-emption costs increase, reducing the
schedulability of the taskset10. This reduction in schedulability
with increasing taskset size holds for all of the approaches,
with a greater reduction observed with Staschulat’s approach
for the reasons explained in Section VI.

Note that the upper bound derived by simulation shows a
much smaller reduction. This is because, as the number of
tasks increases, the number of possible execution scenarios
increases rapidly, thus it becomes less likely that the simulation
will deliver the worst-case scenario.

D. Cache-Size

The number of cache-sets also has an influence on the
overall performance of the different approaches. The more
cache-sets there are, the higher the impact of a pre-emption
may be, given the same cache utilization and block reload
time. Hence as the number of cache sets is increased, all of
the approaches show a similar decrease in schedulability with
the exception of the basic response time analysis which does
not include pre-emption costs, see Figure 10.

Fig. 10. Weighted schedulability measure; varying number of cache sets
from 25 = 64 to 210 = 1024

Varying the block reload time results in similar behaviour,
see Figure 11.

E. Range of task periods

The range of task periods may also influence the perfor-
mance of the different approaches. We therefore conducted
experiments varying the task period generation. Our base
configuration used task periods in the range 5ms to 500ms,
typical of many real-time systems. In Figure (12), we varied
the number of orders of magnitude v spanning the minimum
to the maximum task period and hence the range of task
periods and deadlines given by 5[1, 10v]ms. In Figure (12)
we see that as the range of task periods is increased, by

10The pre-emption costs are not included in the taskset utilization

Fig. 11. Weighted schedulability measure; varying block reload time from
20 = 1µs to 24 = 32µs

making the maximum period larger, schedulability improves
for all of the approaches. This is because increasing the
maximum period has the effect of reducing the proportion of
task that are generated with smaller periods (e.g. in the range
1-10ms). Given that the block reload time is constant in this
experiment, the ratio of pre-emption costs to taskset utilization
reduces for increasing ranges of task periods, thus improving
schedulability11. Note the smaller improvement with no pre-
emption costs is a property of fixed priority scheduling; which
on average can schedule higher utilization tasksets when there
is a wide disparity in task periods.

In Figure (13), we varied the scaling factor w from 1 to 10
and hence the range of task periods given by w[1, 100]ms.
Given that the block reload time is again constant in this
experiment, the ratio of pre-emption costs to taskset utilization
decreases as the task periods, deadlines and execution times
are all scaled up, thus increasing schedulability for all of
the approaches that include pre-emption costs. In fact these
results are similar to the ones for varying block reload times,
but with the results for larger values of the scaling factor w
corresponding to those for smaller block reload times.

VIII. Conclusions
The major contribution of this paper is the introduction

of a new method of bounding pre-emption costs, called the
ECB-Union approach. This approach dominates the UCB-
Only approach of Lee [22]. The ECB-Union approach com-
plements the UCB-Union approach of Tan and Mooney [31],
which dominates the ECB-only approach of Busquets and
Wellings [15] and Tomiyama and Dutt [32]. The ECB-Union
and UCB-Union approaches are incomparable and so we com-
bined them into a composite response time test that dominates
the use of either approach on its own.

We extended the ECB-Union and UCB-Union approaches to
systems that permit tasks to access shared resources in mutual

11Recall that pre-emption costs are not included in taskset utilization.

Fig. 12. Weighted schedulability measure; varying the range of task periods
[5, 50] to [5, 5 · 104]

Fig. 13. Weighted schedulability measure; varying the scale of task periods
w[1, 100] from w = 2 to w = 10

exclusion according to the Stack Resource Policy. Our work in
this area revealed that previous approaches to computing pre-
emption delays, although including blocking factors in their
schedulability analyses, did not account for the pre-emption
of blocking tasks during a resource access. This omission can
lead to optimistic (unsound) response times, an issue that we
corrected.

We extended the ECB-Union and UCB-Union approaches
to FP-FIFO scheduling. FP-FIFO scheduling typically re-
quires far fewer priority levels than fixed priority pre-
emptive scheduling with unique task priorities. Hence FP-
FIFO scheduling can lead to significantly fewer pre-emptions,
as well as a reduction in individual pre-emption costs, due
to a reduction in the number of levels of nested pre-emption.
Our results for FP-FIFO scheduling dominate those for fixed
priority scheduling, as shown in Appendix A.

Finally, we examined the performance of the various ap-
proaches to computing pre-emption costs via a case study and
an empirical evaluation of taskset schedulability. The latter
showed that a combined response time analysis test using
both the new ECB-Union approach derived in this paper, and
the UCB-Union approach of Tan and Mooney [31] provides
an effective method of determining task schedulability. This
combined approach offers a significant improvement in perfor-
mance over previous approaches for a wide range of different
task and cache configurations, including cache utilization level,
amount of reuse, cache size, and block reload times.

Acknowledgements

This research and collaboration came about as a result of the
1st Real-Time Scheduling Open Problems Seminar (RTSOPS
2010) [2]. This work was partially funded by the UK EPSRC
funded Tempo project (EP/G055548/1), the Transregional Col-
laborative Research Center AVACS of the German Research
Council (DFG) and the EU funded ArtistDesign Network of
Excellence.

References
[1] S. Altmeyer and C. Burguière. A new notion of useful cache

block to improve the bounds of cache-related preemption delay.
In Proceedings ECRTS, pages 109–118, 2009.

[2] S. Altmeyer and C. Burguière. Influence of the task model on
the precision of scheduling analysis for preemptive systems. In
Proceedings RTSOPS, pages 5–6, July 2010.

[3] S. Altmeyer and C. Maiza. Cache-related preemption delay via
useful cache blocks: Survey and redefinition. Journal of Systems
Architecture, 2010.

[4] S. Altmeyer, C. Maiza, and J. Reineke. Resilience analysis:
Tightening the crpd bound for set-associative caches. In Pro-
ceedings LCTES, pages 153–162, New York, NY, USA, April
2010. ACM.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority
pre-emptive scheduling. Software Engineering Journal, 8:284–
292, 1993.

[6] N.C. Audsley. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times. Technical report,
Dept. Computer Science, University of York, UK, 1991.

[7] N.C. Audsley. On priority assignment in fixed priority schedul-
ing. Technical report, May 2001.

[8] T. P. Baker. Stack-based scheduling for realtime processes.
Real-Time Syst., 3:67–99, April 1991.

[9] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related
preemption and migration delays: Empirical approximation and
impact on schedulability. In Proceedings OSPERT, pages 33–
44, July 2010.

[10] M. Bertogna, G. C.. Buttazzo, M. Marinoni, G. Yao, F. Esposito,
and M. Caccamo. Preemption points placement for sporadic task
sets. In Proceedings ECRTS, pages 251–260, 2010.

[11] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. C.
Buttazzo. Optimal selection of preemption points to minimize
preemption overhead. In Proceedings ECRTS (to appear), 2011.

[12] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30:129–154, 2005.
10.1007/s11241-005-0507-9.

[13] C. Burguière, J. Reineke, and S. Altmeyer. Cache-related pre-
emption delay computation for set-associative caches—pitfalls
and solutions. In Proceedings WCET, 2009.

[14] A. Burns, K. Tindell, and A. J. Wellings. Fixed priority
scheduling with deadlines prior to completion. In Proceedings
of the 6th Euromicro Workshop on Real-Time Systems, June
1994.

[15] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulability
analysis of preemptive real-time systems. In Proceedings RTAS,
pages 204–212, 1996.

[16] R.I. Davis and A. Burns. Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor
real-time systems. In Real-Time Systems, Volume 47, Issue 1,
pages 1–40, 2010.

[17] R.I. Davis, S. Kollmann, V. Pollex, and F. Slomka. Controller
area network (can) schedulability analysis with fifo queues. In
Proceedings ECRTS (to appear), 2011.

[18] R.I. Davis, N. Merriam, and N.J. Tracey. How embedded
applications using an rtos can stay within on-chip memory
limits. In Proceedings Work in Progress RTSS, 2000.

[19] R.I. Davis, A. Zabos, and A. Burns. Efficient exact schedu-
lability tests for fixed priority real-time systems. IEEE Trans.
Comput., 57:1261–1276, September 2008.

[20] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal, 29(5):390–395, May
1986.

[21] U. Keskin, R.J. Bril, and J.J. Lukkien. Exact response-time
analysis for fixed-priority preemption-threshold scheduling. In
Proceedings Work-in-Progress Session ETFA, 2010.

[22] C.-G. Lee, J. Hahn, Y.-M. Seo, S.L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling. IEEE
Transactions on Computers, 47(6):700–713, 1998.

[23] J.Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks. In Performance
Evaluation 2(4), pages 237–250, 1982.

[24] T. Lundqvist and P. Stenström. Timing anomalies in dynami-
cally scheduled microprocessors. In Proceedings RTSS, page 12,
1999.

[25] S. Martin, P. Minet, and L. George. Non pre-emptive fixed prior-
ity scheduling with fifo arbitration: uniprocessor and distributed
cases. Technical report, INRIA Rocquencourt, December 2007.

[26] S. M. Petters and G. Farber. Scheduling analysis with respect
to hardware related preemption delay. In In Workshop on Real-
Time Embedded Systems, 2001.

[27] H. Ramaprasad and F. Mueller. Tightening the bounds on
feasible preemption points. In Proceedings RTSS, pages 212–
224, 2006.

[28] J. Regehr. Scheduling tasks with mixed preemption relations
for robustness to timing faults. In Proceedings RTSS, 2002.

[29] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39:1175–1185, September 1990.

[30] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis
of real-time systems with precise modeling of cache related
preemption delay. In Proceedings ECRTS, 2005.

[31] Y. Tan and V. Mooney. Timing analysis for preemptive multi-
tasking real-time systems with caches. Trans. on Embedded
Computing Sys., 6(1), 2007.

[32] H. Tomiyama and N. D. Dutt. Program path analysis to bound
cache-related preemption delay in preemptive real-time systems.
In Proceedings CODES, pages 67–71, 2000.

[33] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
pre-emption threshold. In Proceedings RTCSA, 1999.

[34] A. Zuhily and A. Burns. Optimality of (d-j)-monotonic priority
assignment. Information Processing Letters, Number 103:247–
250, 2007.

Appendix
A FP-FIFO Scheduling

In this appendix, we extend the ECB-Union and UCB-
Union approaches to systems using FP-FIFO scheduling. With
FP-FIFO scheduling a number of tasks may share the same
priority level. Such tasks are scheduled on a FIFO basis and
so cannot pre-empt each other; however, they can still be pre-
empted by tasks of higher priority. For constrained deadline
tasksets, (2) can be extended to the FP-FIFO case in a similar
way to the analysis described in [25]:

Ri =
∑
∀e∈eq(i)

Ce +
∑
∀ j∈hp(i)

⌈
Ri + J j

T j

⌉
(C j + γi, j) (20)

where eq(i) is the set of tasks with the same priority as task
τi. Equation (20) holds provided that all of the tasks are
schedulable. In this case the maximum time that any task τi

can spend in a FIFO queue is Di ≤ Ti , hence there can be
at most one job of each task from the set eq(i) in the FIFO
queue for that priority level at any given time. Assuming that
task τi is the last of these tasks gives the worst-case response
time.

We now show how the equations giving the pre-emption
cost γi, j, can be extended to the case of FP-FIFO scheduling.

Equation (5) (UCB-Union analysis) takes the union of all
possible affected useful cache blocks and combines this with
the set of evicted cache blocks of the pre-empting task. The
union is therefore over the set of tasks that can be directly pre-
empted by task τ j and is given by aff(i, j) = hep(i)∩lp(j), in the
case of fixed priority pre-emptive scheduling with no shared
resources. We observe that aff(i, j) represents exactly those
tasks that can be pre-empted by task τ j in the FP-FIFO case.
The only difference is that hep(i) now contains all of the tasks
with priorities equal to that of task τi and all tasks of higher
priority. Equation (5) therefore applies unchanged to FP-FIFO
scheduling. Note that the second summation term in (20)
iterates over all of the tasks of higher priority than task τi, even
though some of these tasks may share priority levels, hence all
possible pre-empting tasks are also considered. Equation (20)
combined with (5) therefore extends the UCB-Union approach
to FP-FIFO scheduling.

The ECB union approach is similarly extended to FP- FIFO
scheduling. Equation (10) takes the maximum value over the
UCBs of tasks that can affect the response time of task τi by
being pre-empted by task τ j. Again this set is given by aff(i, j)
which represents exactly those tasks that can be directly pre-
empted by task τ j in the FP-FIFO case. The union of ECBs
in (10), over task τ j and all higher priority tasks accounts
for the evicted cache blocks due to pre-emption by task τ j

including the effects of nested pre-emption of task τ j by tasks
of higher priority. In the FP-FIFO case, this represents exactly
the ECBs required. Note, we take care to use the set hp(j)∪{ j}
rather than hep(j) as task τ j cannot be pre-empted by tasks
of the same priority. Instead, the impact of such tasks on the
response time of task τi is accounted for when the second
summation term in (20) iterates over those tasks. Equation (20)

combined with (10) therefore extends the ECB union approach
to FP-FIFO scheduling.

We note that in the case of both the ECB-Union and
UCB-Union approaches, (20) is what is referred to as a
FIFO-symmetric schedulability test [17]. This means that the
response times computed for all tasks at the same priority
level are equal. Hence, all of the tasks at a given priority level
are schedulable provided they meet the tightest time constraint
(deadline minus release jitter) of any of those tasks.

In FP-FIFO scheduled systems with shared resources, the
Stack resource Policy can again be used to control resource
access. In this case, the analysis of blocking given in Section V
applies, including the addition of blocking tasks to the set
aff(i, j) and the extension of (20) via the addition of the
blocking factor Bi. (The only difference is that the set of tasks
hep(i) can include other tasks with the same priority as task
τi).

A. Priority assignment

The analysis presented in this paper is independent of the
priority ordering used; however, in fixed priority scheduling
appropriate priority assignment is key to obtaining a schedu-
lable system. For the simple case of sporadic tasksets with
constrained deadlines, with no blocking, no release jitter, and
no pre-emption costs, Leung and Whitehead [23] showed that
deadline monotonic priority ordering (DMPO) is optimal. With
blocking according to the Stack Resource Policy and release
jitter, but no pre-emption costs, then deadline minus jitter
monotonic priority ordering (DJMPO) is optimal [34]. It is
trivial; however, to construct examples with non-zero pre-
emption costs where DJMPO is not optimal. For example,
consider two tasks τA and τB with parameters CA = 5,
DA = TA = 10, and CB = 5, DB = TB = 11. Further, let
UCBA = ∅, ECBA = {1, 2}, and UCBB = {1, 2}, ECBB = {1, 2}.
Now with DJMPO, task τA is assigned the higher priority,
resulting in a pre-emption cost of 2 when it pre-empts task
τB. This is enough to render task τB unschedulable. However,
with the priorities reversed, the pre-emption cost is zero and
both tasks will meet their deadlines. Even with the simple
ECB-only approach, DJMPO is not optimal as the response
time analysis resembles that for tasks with deadlines prior to
completion [14].

An alternative approach might be to use Audsley’s Optimal
Priority Assignment (OPA) algorithm [6, 7]. The OPA algo-
rithm is compatible with any schedulability test that meets
three conditions set out in [16]. However, we note that
when using the ECB-Union or the UCB-Union approach, the
response time of task τi depends not only on the set of higher
priority tasks, but also on their relative priority ordering, thus
breaking Condition 1 in [16]. Both of these approaches are
therefore incompatible with the OPA algorithm. By contrast,
the ECB-only approach is OPA-compatible.

With pre-emption costs dependent on task UCBs and ECBs
there is significant scope for priority assignment to improve
schedulability via avoiding specific evictions and reloads: A
group of tasks that use and evict the same set of cache blocks

would clearly benefit from sharing the same priority level.
Research into this joint priority assignment and scheduling
problem forms an interesting area for future research. While a
comprehensive investigation of priority assignment is beyond
the scope of this paper, we can make use of DJMPO as
a simple heuristic policy enabling a meaningful compari-
son between the different analyses. In the case of FP-FIFO
scheduling, we adopt a greedy approach based on DJMPO as
detailed in Algorithm 1.

Algorithm 1: Greedy DJMPO for FP-FIFO.
For each priority level p starting at the highest level down
to however many priority levels are required. begin

For each unassigned task in deadline minus jitter
monotonic order begin

If the task can be added to priority level p such
that it and all the tasks already assigned to
priority level p are schedulable, then assign the
task to priority level p. Otherwise break out of
this inner loop.

end
If no tasks remain unassigned then return - a
schedulable solution has been found.
If some tasks remain unassigned but no task was
assigned to this priority level then return - no
schedulable solution found.

end

We observe that greedy DJMPO for FP-FIFO dominates
fixed priority pre-emptive scheduling with DJMPO. This is
the case because: (i) with greedy DJMPO for FP-FIFO, if
we only assign one task to a priority level, then we get
the same solution and the same schedulability test as fixed
priority pre-emptive scheduling with DJMPO order, (ii) if we
are able to assign a task τ j to a shared priority level p, then
such assignment cannot reduce the schedulability of any lower
priority tasks. This is the case because the only difference in
the response time analysis for a lower priority task τi is the
pre-emption cost γi, j. γi, j is no larger when task τ j is at shared
priority level p, than it is when τ j is at priority level (p + 1)
on its own, since:

ECB j ∪
⋃

m∈hp(p)

ECBm ⊆ ECB j ∪
⋃

m∈hep(p)

ECBm (21)

where the LHS of (21) is the ECB union used in calculating
γi, j when task τ j is at the shared priority level p, and the RHS
is the ECB union used when τ j is alone at the lower priority
level (p + 1).

B. Case Study and Evaluation

We repeated the experiments described in the case study
(Section VI) and evaluation (Section VII), using the combined
ECB-Union and UCB-Union approach and response time
analysis for FP-FIFO scheduling, assuming greedy DJMPO
priority assignment.

For the taskset in the case study, FP-FIFO scheduling was
no more effective than fixed priority scheduling with unique
priority levels, hence the breakdown utilization achieved was
the same as that given in Table II i.e. 0.767.

In terms of the more general evaluation, we found that
as expected, the results for FP-FIFO scheduling dominated
those for fixed priority scheduling with unique priority levels;
however, the margin of improvement was relatively small; see
the set of graphs from Section VII, reproduced below with the
addition of a line for FP-FIFO response time analysis using the
combined ECB-Union and UCB-Union approach. The largest
improvement obtained by using FP-FIFO scheduling, occurs
when the range of task periods is small, and hence many tasks
have similar deadlines, and can be scheduled using a limited
number of priority levels, see Figure 20.

The reason that FP-FIFO shows only a marginal improve-
ment over fixed priority scheduling with unique priority levels
is because, although placing more than one task at a given
priority level reduces the pre-emption costs, it also tightens
the timing constraints that must be met. This happens because
the response times of all of the tasks at a given priority level
must be less than or equal to the shortest deadline of any
of those tasks. This effect negates the advantage of reduced
pre-emption costs for many tasksets.

The average breakdown utilization of the tasksets from
the baseline configuration was 0.66 with FP-FIFO (combined
ECB-Union and UCB-Union approach), compared to 0.64
with fixed priority scheduling (see Table III in Section VII).

Fig. 14. Evaluation of base configuration. Number of tasksets deemed
schedulable at the different total utilizations (with FP-FIFO).

Appendix
B Evaluation Results, constrained deadline

Figures 22, 23, 24, 25, 26, and 27 show results for tasksets
with constrained deadlines (Di ∈ [2Ci,Ti]). Note, we used
a minimum deadline of 2Ci rather than Ci to ensure that

Fig. 15. Weighted schedulability measure; varying cache utilization from 0
to 20, in steps of 2 (with FP-FIFO)

Fig. 16. Weighted schedulability measure; varying reuse factor from 0% to
100%, in steps of 10% (with FP-FIFO)

tasks would not be trivially unschedulable as soon as any pre-
emption costs were included. Task deadlines were capped at
Ti in the case that 2Ci > Ti.

The graphs for tasksets with constrained deadlines all show
broadly similar behaviour to those for tasksets with implicit
deadlines (Di = Ti), save for the fact that at any given level
of taskset utilization, the number of schedulable tasksets is
reduced.

Fig. 17. Weighted schedulability measure; varying number of tasks from
2 = 21 to 26 = 64. (with FP-FIFO)

Fig. 18. Weighted schedulability measure; varying number of cache sets
from 25 = 64 to 210 = 1024 (with FP-FIFO)

Fig. 19. Weighted schedulability measure; varying block reload time from
20 = 1µs to 24 = 32µs (with FP-FIFO)

Fig. 20. Weighted schedulability measure; varying the range of task periods
[5, 50] to [5, 5 · 104] (with FP-FIFO)

Fig. 21. Weighted schedulability measure; varying the scale of task periods
w[1, 100] from w = 2 to w = 10 (with FP-FIFO)

Fig. 22. Evaluation of base configuration. Number of tasksets deemed
schedulable at the different total utilizations (constrained deadline).

Fig. 23. Weighted schedulability measure; varying cache utilization from 0
to 20, in steps of 2 (constrained deadline)

Fig. 24. Weighted schedulability measure; varying reuse factor from 0% to
100%, in steps of 10% (constrained deadline)

Fig. 25. Weighted schedulability measure; varying number of tasks from
2 = 21 to 26 = 64. (constrained deadline)

Fig. 26. Weighted schedulability measure; varying number of cache sets
from 25 = 64 to 210 = 1024 (constrained deadline)

Fig. 27. Weighted schedulability measure; varying block reload time from
20 = 1µs to 24 = 32µs (constrained deadline)

Fig. 28. Weighted schedulability measure; varying the range of task periods
[5, 50] to [5, 5 · 104] (constrained deadline)

Fig. 29. Weighted schedulability measure; varying the scale of task periods
w[1, 100] from w = 2 to w = 10 (constrained deadline)

