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We describe two improvements to Chaitin-style graph coloring register allocators. The first, opti-

mistic coloring, uses a stronger heuristic to find a k-coloring for the interference graph. The second
extends Chaitin’s treatment of rematerialization to handle a larger class of values. These tech-

niques are complementary. Optimistic coloring decreases the number of procedures that require
spill code and reduces the amount of spill code when spilling is unavoidable. Rematerialization

lowers the cost of spilling some values.
This paper describes both the techniques themselves and our experience building and using

register allocators that incorporate them. It provides a detailed description of optimistic coloring
and rematerialization. It presents experimental data to show the performance of several versions

of the register allocator on a suite of FORTRAN programs. It discusses several insights that we
discovered only after repeated implementation of these allocators.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers,

optimization

General terms: Languages
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1. INTRODUCTION

The relationship between run-time performance and effective use of a machine’s
register set is well understood. In a compiler, the process of deciding which values
to keep in registers at each point in the generated code is called register allocation.
Values in registers can be accessed more quickly than values in memory – on high-
performance, microprocessor-based machines, the difference in access time can be
an order of magnitude. Thus, register allocation has a strong impact on the run-
time performance of the code that a compiler generates. Because relative memory
latencies are rising while register latencies are not, the impact of allocation on
performance is increasing. In addition, features like superscalar instruction issue
increase a program’s absolute demand for registers – if the machine issues two
instructions in a single cycle, it must have two sets of operands ready and in place
at the start of the cycle. This naturally increases the demand for registers.

Popular techniques for performing register allocation are based on a graph color-
ing paradigm. These allocators construct a graph representing the constraints that
the allocator must preserve. Using graph coloring techniques, they discover a map-
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ping from values in the procedure to registers in the target machine; the map-
ping must observe the constraints. The first graph coloring allocator was built by
Chaitin and his colleagues [8]. Another approach, called priority-based coloring,
was described by Chow and Hennessy [10, 11]. These two techniques have formed
the core around which a rich literature has emerged (see Section 7).

The techniques used in building graph coloring allocators can be improved. In
recent years, several important extensions to Chaitin’s basic techniques have ap-
peared [2, 30]. Nevertheless, problems remain. In practice, most of these problems
appear as either over-spilling or a poor spill choice. In the former case, the allocator
fails to keep some value in a register, even though a register is available throughout
its lifetime. In the latter case, the allocator chooses the “wrong” value to keep in a
register at some point in the code.

This paper presents two improvements to existing techniques for register alloca-
tion via graph coloring. The next section provides necessary background, describing
Chaitin’s allocator. The following two sections provide a detailed description of op-
timistic coloring and rematerialization, two improvements to Chaitin’s approach.
Section 5 presents experimental data to show the performance of several versions of
the register allocator on a suite of FORTRAN programs. Section 6 discusses several
insights that we discovered only after repeated implementation of these allocators.
Finally, section 7 presents a discussion of related work.

2. REGISTER ALLOCATION VIA GRAPH COLORING

The notion of abstracting storage allocation problems to graph coloring dates from
the early 1960’s [28] (see Section 7). The first implementation of a graph coloring
register allocator was done by Chaitin and his colleagues in the PL.8 compiler [8, 6].
Chow and Hennessy later described a priority-based scheme for allocation based on
a coloring paradigm [10, 11]. Almost all subsequent work on coloring-based allo-
cation has followed from one of these two papers. Our own work follows Chaitin’s
scheme.

Any discussion of register allocation will contain several implicit assumptions.
For our work, we assume that the allocator works on low-level intermediate code
or assembly code. The code has been shaped by an optimization phase. Before
allocation, the code can reference an unlimited number of registers. We call these
“pre-allocation” registers virtual registers. The allocator does not work with the
virtual registers; instead, it works with the distinct live ranges in a procedure.
A single virtual register can have several distinct values that are live in different
parts of the program – each of these values will become a separate live range.
The allocator discovers all the separate live ranges and allocates them to physical
registers on the target machine.

To model register allocation as a graph coloring problem, the compiler first con-
structs an interference graph G. The nodes in G correspond to live ranges and the
edges represent interferences. Thus, there is an edge in G from node i (live range
li) to node j if and only if li interferes with lj ; that is, they are simultaneously live
at some point and cannot occupy the same register.1 The live ranges that interfere
with a particular live range li are called neighbors of li in the graph; the number
of neighbors is the degree – denoted l◦i .

1See Chaitin et al. for a complete discussion of interference [8].
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Fig. 1. Chaitin’s Allocator

An attractive feature of Chaitin’s approach is that machine-specific constraints on
register use can be represented directly in the graph [8]. Thus, the graph represents
both the constraints embodied in the program and those presented by the target
architecture in a single, unified structure. This is one of the key insights underlying
graph coloring allocators: the interference graph represents all the constraints.

To find an allocation from G, the compiler looks for a k-coloring of G; that is,
an assignment of k colors to the nodes of G such that adjacent nodes always have
distinct colors. If we choose k to match the number of machine registers, then we
can map a k-coloring of G into a feasible register assignment for the underlying
code. Because graph coloring is NP-complete [21], the compiler uses a heuristic
method to search for a coloring; it is not guaranteed to find a k-coloring for all
k-colorable graphs. If a k-coloring is not discovered, some values are spilled; that
is, the values are kept in memory rather than in registers.

Spilling one or more live ranges creates a new and different interference graph.
The compiler proceeds by iteratively spilling some live ranges and attempting to
color the resulting new graph. In practice, a Chaitin-style allocator rarely requires
more than three trips through this loop. Figure 1 illustrates a Chaitin-style alloca-
tor. It proceeds in seven phases.

(1) Renumber systematically renames live ranges. It creates a new live range for
each definition point. At each use point, it unions together the live ranges that
reach the use. Our implementation models this as an example of the classical
disjoint set union-find problem. (In the papers on the PL.8 compiler, this
analysis is called “getting the right number of names”[8]. The Hewlett-Packard
Precision Architecture compiler papers refer to this as “web analysis”[25].)

(2) Build constructs the interference graph. Our implementation closely follows
the published descriptions of the PL.8 allocator [8, 6]. The interference graph
is simultaneously represented as a bit-matrix and as a collection of adjacency
lists.

(3) Coalesce attempts to shrink the number of live ranges. Two live ranges li
and lj are combined if the initial definition of lj is a copy from li and they
do not otherwise interfere. Combining the two live ranges eliminates the copy
instruction. We denote the new live range lij .
When the allocator combines li and lj , it can construct an imprecise but con-
servative approximation to the set of interferences for lij . The conservative
update lets the allocator batch together many combining steps. It performs all
the coalescing possible with the update, then repeats both build and coalesce
if coalescing has changed the graph.
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Fig. 2. Example Graphs

(4) Spill costs estimates, for each live range, the run-time cost of any instructions
that would be added if the item were spilled. This cost is estimated by com-
puting the number of loads and stores that would be required to spill the live
range, with each operation weighted by c× 10d, where c is the operation’s cost
on the target architecture and d is the instruction’s loop-nesting depth.

(5) Simplify constructs an ordering of the nodes. It creates an empty stack, then
repeats the following two steps until the graph is empty:
(a) If there exists a node li with l◦i < k, remove li and all of its edges from the

graph. Place li on the stack for coloring.
(b) Otherwise, choose a node li to spill. Remove li and all of its edges from

the graph. Mark li to be spilled.
After this, if any node is marked for spilling, the allocator inserts spill code
(see 7 below) and repeats the allocation process. If no spilling is required, it
proceeds to select (see 6 below).

(6) Spill code is invoked if simplify decides to spill a node. Each spilled live range
is converted into a collection of tiny live ranges by inserting loads before uses
and stores after definitions, as required.

(7) Select assigns colors to the nodes of the graph in the order determined by
simplify. It repeats the following steps until the stack is empty:
(a) pop a live range from the stack,
(b) insert its corresponding node into G, and
(c) give it a color distinct from its neighbors.

To understand why this works, consider the actions of simplify and select. Simplify
only moves li from the graph to the stack if l◦i < k. Any live range that meets this
condition is trivially colorable – that is, it will receive a color independent of the
colors assigned to its neighbors. Thus, simplify only removes a node when it can
prove that the node will get assigned a color. As each live range is removed, the
degrees of its neighbors are lowered. This, in turn, may prove that they can be
assigned colors.

Select assigns colors to the nodes in reverse order of removal. Thus, it colors each
node in a graph where it is trivially colorable; simplify ordered the stack so that
this must be true. In one sense, the ordering colors the most constrained nodes first
– li gets colored before lj precisely because simplify proved that lj was colorable
independent of the specific color chosen for li.
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994, pp. 428–455.
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As an example, consider finding a three-coloring for the “simple graph” shown
in Figure 2. First, simplify removes all the nodes; it does not need to spill any
of them. One possible sequence of removals is a, c, b, d, e. Next, select reinserts
nodes into the graph, assigning colors. Node e is inserted first and can be given any
color, say red. Next, d is added; it can get any color except red. Running through
the entire stack might result in the assignment: e ← red, d ← blue, b ← green,
c← red, and a← blue.

The decision to spill a live range is made in simplify. When the allocator cannot
find a node that is trivially colorable, it selects a node to spill. The metric for
picking spill candidates is important. Chaitin suggests choosing the node with the
smallest ratio of spill cost divided by current degree of the node [6].

Chaitin’s heuristic is not guaranteed to find the minimal coloring nor can it be
guaranteed to find a k-coloring if it exists; after all, graph coloring is NP-complete.
For example, suppose we want to find a two-coloring of the “diamond graph” shown
in Figure 2. Clearly, one exists; for example w ← red, x ← blue, y ← blue, and
z ← red. Applying simplify to the diamond graph presents an immediate problem
because there are no nodes with degree less than two. Thus, some node is selected
for spilling. If all spill costs are equal, the allocator will make an arbitrary choice;
for example, x. After x is removed from the graph and marked for spilling, simplify
will remove the remaining three nodes without further spilling. Since a node was
marked to spill, the allocator must insert spill code, rebuild the interference graph,
and try again.

Even though examples like the diamond graph exist, Chaitin’s technique produces
good allocations in practice. Several factors contribute to its success. Allocation is
based on global information in the form of a precise interference graph. It includes
a powerful mechanism to remove unneeded copies – coalescing. Finally, it uses
spill costs to guide the generation of spill code; those spill costs encode simple
information about the control-flow graph. Any improvements to Chaitin’s work
should retain these properties.

3. OPTIMISTIC COLORING

As part of the ParaScope programming environment [12], we built an optimizing
compiler for FORTRAN running on uniprocessors. The initial implementation in-
cluded a register allocator that used Chaitin’s technique as described in Section 2.
The allocator worked well and seemed to produce satisfactory allocations. It re-
quired modest amounts of time and space at compile time. However, as we debugged
other parts of the compiler, we discovered several cases where it produced obviously
flawed allocations.

3.1 A Motivating Problem

A particularly interesting case arose in the code generated for the singular value
decomposition (SVD) of Golub and Reinsch [22]. The actual code was from the
software library distributed with Forsythe, Malcolm, and Moler’s book on numerical
methods [18]. It has two hundred fourteen lines of code, excluding comments. The
code contains thirty-seven DO-loops organized into five different loop nests. The
first loop nest is a simple array copy; four larger and more complex loop nests
follow. Figure 3 shows its structure.
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subroutine SVD(M, N, . . .)
do I = 1, N

do J = 1, M

A(I, J) = B(I, J)

enddo

enddo

do
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enddo
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enddo
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enddo

do
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enddo

Fig. 3. The Structure of SVD

In SVD, the allocator spilled many short live ranges in deference to the longer,
more expensive live ranges. In the array-copy loops, it spilled the loop indices and
limits even though several registers were unused in the loop. After some study, we
understood both why the register allocator over-spilled so badly and what situations
provoked this behavior.

After optimization, about a dozen long live ranges extend from the initialization
portion of the code down into the large loop nests. As the figure shows, the long
live ranges span the small array-copy loops. Because they span so much of the
code, they all have high degree in the interference graph. Additionally, they have
large spill costs because they are referenced often inside deeply nested loops. They
restrict the graph so much that the allocator must spill some live ranges.

Initially, the allocator chooses to spill the indices and limits on the array-copy
loops. This choice is correct. Because these values have smaller estimated spill costs
than the longer live ranges, the allocator should choose them first. Unfortunately,
spilling them does not help; the problem is in the later loop nests. To alleviate the
demand for registers in the large loop nests, the allocator must spill more values.
As it proceeds, it eventually spills most of the longer live ranges. As a result, there
are unused registers in the array-copy loops (and the indices and limits are kept in
memory).

3.2 An Improved Coloring Heuristic

Knowing that the allocator over-spilled on both the diamond graph and the SVD,
we reconsidered the allocation process. Each of the examples highlights a different
problem.

(1) The diamond graph is two-colorable; we can see that by inspection. The allo-
cator fails because the approximation that it uses to decide whether x will get
a color is too weak.
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In looking for a k-coloring, the allocator approximates “x gets a color” by “x
has degree less than k.” This is a sufficient condition for x to get a color but not
a necessary condition. For example, x may have k neighbors, but two of those
neighbors may get assigned the same color. This is precisely what happens in
the diamond graph.

(2) In SVD, the allocator must spill some live ranges. The heuristic for picking a
spill candidate selects the small live ranges used in shallow loop nests because
they are less expensive to spill. Unfortunately, spilling them is not productive
– it does not alleviate register pressure in the major loop nests.
At the time that the allocator makes the decisions, it cannot recognize that the
spills will not help. Similarly, the allocator cannot retract the decisions later.
Once spilled, a live range stays spilled.

The coloring heuristic explored by Matula and Beck finds a two-coloring for the
diamond graph [29]. Their algorithm differs only slightly from Chaitin’s approach.
To simplify the graph, they repeatedly remove the node of smallest current degree,
versus Chaitin’s approach of removing any node n where n◦ < k. After all nodes
have been removed, they select colors in the reverse of the order of deletion, in the
same fashion as Chaitin.

On the diamond graph, this heuristic generates a two-coloring. Chaitin’s heuristic
fails because it pessimistically assumes that all the neighbors of a node will get
different colors. Matula and Beck’s heuristic discovers a two coloring because it
can capitalize on the case when two neighbors receive the same color.

Unfortunately, Matula and Beck’s scheme simply finds a coloring; there is no
notion of finding a k-coloring for some particular k and no mechanism for producing
spill code. In real programs, this is a serious problem. Many procedures require
spill code – their interference graphs are simply not k-colorable. For example, the
SVD routine must spill some live ranges; an optimal coloring would not eliminate
all spills.

We wanted an algorithm that combined Matula and Beck’s stronger coloring
heuristic with Chaitin’s mechanism for cost-guided spill selection. To achieve this
effect, we made two modifications to Chaitin’s original algorithm:

(1) In simplify, the allocator removes nodes that have degree less than k in arbitrary
order. Whenever it discovers that all the remaining nodes have degree greater
than k, it chooses a spill candidate. That node is removed from the graph;
but instead of marking it for spilling, simplify optimistically pushes it on the
stack, hoping that a color will be available in spite of its high degree. Thus,
it removes nodes in the same order as Chaitin’s allocator, but spill candidates
are included on the stack for possible coloring.

(2) In select, the allocator may discover that no color is available for some node.
In that case, it leaves the node uncolored and continues with the next node.
Any uncolored node must be a node that Chaitin’s method would spill. To see
this, consider the case where a node n was removed from a graph Gm yielding
a new graph Gm+1. In both methods, n is inserted into Gm+1, recovering
Gm. Chaitin’s method guarantees that a color is available for n in Gm. Our
method guarantees this property for all nodes except spill candidates. Thus, an
uncolored node must be a spill candidate, that is, a node that Chaitin would
have spilled.
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Fig. 4. The Optimistic Allocator

If all nodes receive colors, the allocation has succeeded. If any nodes are uncol-
ored, the allocator inserts spill code for the corresponding live ranges, rebuilds
the interference graph, and tries again.

The resulting allocator is shown in Figure 4. We call it an optimistic allocator. The
decision to insert spill code now occurs in select, rather than in simplify. The rest
of the allocator is unchanged from Chaitin’s scheme. In this form, the allocator can
handle both of the problems described at the head of this section.

Deferring the spill decision has two powerful consequences. First, it eliminates
some non-productive spills. In Chaitin’s scheme, spill decisions are made during
simplify, before any nodes are assigned colors. When it selects a node as a spill
candidate, that live range is spilled. In our scheme, spill candidates get placed on
the stack with all the other nodes. Only when select discovers that no color is
available is the live range actually spilled. This mechanism, in effect, allows the
allocator to reconsider spill decisions.

Second, late spilling capitalizes on details of the color assignment to provide a
stronger coloring heuristic. In selecting a color for node x, it examines the colors of
all x’s current neighbors. This provides a direct measure of “does x get a color?”
rather than estimating the answer with “is x◦ < k?” In particular, if two or more
of x’s neighbors receive the same color, then x may receive a color even though
x◦ ≥ k. The optimistic allocator finds a two-coloring for the diamond graph.

Recall SVD. The live ranges for I, J, M, and N are early spill candidates because
their spill costs are small. However, spilling them does not alleviate register pressure
inside the major loop nests. Thus, the allocator must spill some of the large live
ranges; this happens after the small live ranges have been selected as spill candidates
and placed on the stack. When the small live ranges come off the stack in select,
some of these large live ranges have been spilled. The allocator can easily determine
that colors are available for these small live ranges in the early array-copy loops.

Optimistic coloring is a simple improvement to Chaitin’s pessimistic scheme.
Assume that we have two allocators, one optimistic and one pessimistic, and that
both use the same spill metric – for example, Chaitin’s metric of spill cost divided
by current degree. The optimistic allocator has a stronger coloring heuristic in the
following sense: it will color any graph that the pessimistic allocator does and it will
color some graphs that the pessimistic allocator will not. If spilling is necessary, the
optimistic allocator will spill a subset of the live ranges spilled by the pessimistic
allocator.

Optimistic coloring helps generate better allocations. In a few cases, this elimi-
nates all spilling; the diamond graph is one such example. In many cases, the cost
of spilling is reduced; that is, the procedure executes fewer cycles due to register
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994, pp. 428–455.
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spilling. Section 5 presents dynamic measurements of the improvement. An imple-
mentation of this technique in the back-end of the IBM XL compiler family for the
RS/6000 architecture resulted in a decrease of about twenty percent in estimated
spill costs over the SPEC benchmark suite [24].

4. REMATERIALIZATION

Even with optimistic coloring, the allocator must spill some live ranges. When this
happens, the allocator should choose the least expensive mechanism to accomplish
the spill. In particular, it should recognize cases where it is cheaper to recompute
the value than to store and retrieve it from memory. Consider the code fragments
shown in Figure 5 (the notation [p] means “the contents of the memory location
addressed by p”).

Source. Note that p is constant in the first loop, but varying in the second loop.
The register allocator should take advantage of this situation.

Ideal. Imagine that high demand for registers in the first loop forces p to be spilled;
this column shows the desired result. In the upper loop, p is loaded just before
it is needed, using a “load-immediate” instruction. For the lower loop, p is
loaded just before the loop, again using a load-immediate.

Chaitin. This column illustrates the code that would be produced by a Chaitin-
style allocator. The entire live range of p has been spilled to memory, with
loads inserted before uses and stores inserted after definitions.

Splitting. The final column shows code we would expect from a “splitting” allo-
cator [11, 27, 23, 5]; the actual code might be worse. In fact, our work on
rematerialization was motivated by problems observed during our own experi-
ments with live range splitting [3]. Unfortunately, examples of this sort are not
discussed in the literature on splitting allocators and it is unclear how best to
extend these techniques to achieve the Ideal solution.

This section divides into two major subsections. The first presents a conceptual
view of our approach to rematerialization. The second discusses the implementation
of these ideas in our allocator.

4.1 The Ideas

Chaitin et al. discuss several ideas for improving the quality of spill code [8]. They
point out that certain values can be recomputed in a single instruction and that
the required operands will always be available for the computation. They call these
exceptional values never-killed and note that such values should be recalculated
instead of being spilled and reloaded. They further note that an uncoalesced copy
of a never-killed value can be eliminated by recomputing it directly into the desired
register [8]. Together, these techniques are termed rematerialization. In practice,
opportunities for rematerialization include:

—immediate loads of integer constants and, on some machines, floating-point con-
stants,

—computing a constant offset from the frame pointer or the static data-area pointer,
—loads from a constant location in either the frame or the static data-area, and
—loading non-local frame pointers from a display.
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994, pp. 428–455.
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p← Label
store p

reload p
y← y + [p]

reload p
p← p+ 1
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Splitting

p← Label
store p

reload p
y ← y + [p]

reload p

p← p+ 1

?

?

?

?

?





Fig. 5. Rematerialization versus Spilling

The values must be cheaply computable from operands that are available through-
out the procedure.

It is important to understand the distinction between live ranges and values. A
live range may comprise several values connected by common uses. In the Source
column of Figure 5, p denotes a single live range composed from three values: the
address Label, the result of the expression p + 1, and (more subtly) the merge of
those two values at the head of the second loop.

Chaitin’s allocator correctly handles rematerialization when spilling a live range
with a single value, but cannot handle more complex cases, like the variable p in
Figure 5. We have extended Chaitin’s work to take advantage of rematerialization
opportunities for complex, multi-valued live ranges. Our method tags each value
with enough information to allow the allocator to handle it correctly. To achieve
this, we

(1) split each live range into its component values,
(2) tag each value with rematerialization information, and
(3) form new live ranges from connected values having identical tags.

This approach allows correct rematerialization of multi-valued live ranges, but in-
troduces a new problem: minimizing unnecessary splits. The following sections
describe how to find values, how to propagate tags, how to split live ranges, and
how to remove unproductive splits.

4.1.1 Discovering Values. To find values, we construct the procedure’s static
single assignment (SSA) graph, a representation that transforms the code so that
each use of a value references exactly one definition [13]. To achieve this goal,
the construction technique inserts special definitions called φ-nodes at those points
where control-flow paths join and different values merge. We actually use the
pruned SSA graph, with dead φ-nodes eliminated [9].

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994, pp. 428–455.
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A natural way to view the SSA graph for a procedure is as a collection of values,
each composed of a single definition and one or more uses. Each value’s definition
is either a single instruction or a φ-node that merges two or more values. By
examining the defining instruction for each value, we can recognize never-killed
values and propagate this information throughout the SSA graph.

4.1.2 Propagating Rematerialization Tags. To propagate tags, we use an analog
of Wegman and Zadeck’s sparse simple constant algorithm [33].2 We modify their
lattice slightly to represent the necessary rematerialization information. The new
lattice elements may have one of three types:

> Top means that no information is known. A value defined by a copy instruction
or a φ-node has an initial tag of >.

inst If a value is defined by an “appropriate” instruction (never-killed), it should
be rematerialized. The value’s tag is simply a pointer to the instruction.

⊥ Bottom means that the value must be spilled and restored. Any value defined
by an “inappropriate” instruction is immediately tagged with ⊥.

Additionally, their meet operation u is modified correspondingly. The new defini-
tion is:

any u > = any
any u ⊥ = ⊥
insti u instj = insti if insti = instj
insti u instj = ⊥ if insti 6= instj

Note that insti = instj compares the instructions on an operand-by-operand basis.
Since our instructions have at most 2 operands, this modification does not affect
the asymptotic complexity of propagation.

During propagation, each value will be tagged with a particular inst or ⊥. Values
defined by a copy instruction will have their tags lowered to inst or ⊥, depending
on the value that flows into the copy. Tags for values defined by φ-nodes will be
lowered to inst if and only if all the values flowing into the node have equivalent
inst tags; otherwise, they are lowered to ⊥.

This process tags each value in the SSA graph with either an instruction or ⊥.
If a value’s tag is ⊥, spilling that value requires a normal, heavyweight spill. If,
however, its tag is an instruction, it can be rematerialized by issuing the instruction
specified by the tag – a lightweight spill. The tags are used in two later phases of
the allocator: spill costs uses the tags to compute more accurate spill costs and
spill code uses the tags to emit the desired code.

4.1.3 Inserting Splits. After propagation, the φ-nodes must be removed and val-
ues renamed to recreate an executable program. Consider the example in Figure 6.
The Source column simply repeats the example introduced in Figure 5. The SSA
column shows the effect of inserting a φ-node for p and renaming the different val-
ues comprising p’s live range. The Splits column illustrates the copies necessary
to distinguish the different values without φ-nodes. The final column (Minimal)
shows the single copy required to isolate the never-killed value p0 from the other

2The more powerful sparse conditional constant algorithm is unnecessary; earlier optimization has
eliminated any control-flow paths that it would detect as non-executable.
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Source

p← Label

y ← y + [p]

p← p+ 1

?

?

?

?





SSA

p0 ← Label

y ← y + [p0]

p1 ← φ(p0, p2)
p2 ← p1 + 1

?

?

?

?





Splits

p0 ← Label

y← y + [p0]

p1 ← p0

p2 ← p1 + 1 p1 ← p2

?

?

?

?

?



�



Minimal

p0 ← Label

y ← y + [p0]

p12 ← p0

p12 ← p12 + 1

?

?

?

?

?





Fig. 6. Introducing Splits

values comprising p. We avoid the extra copy by noting that p1 and p2 have iden-
tical tags after propagation (both are ⊥) and may be treated together as a single
live range p12. Similarly, two connected values with the same inst tag would be
combined into a single live range.

For the purposes of rematerialization, the copies are placed perfectly – the never-
killed value has been isolated and no further copies have been introduced.3 The
algorithm for removing φ-nodes and inserting copies is described in Section 4.2.1.

4.1.4 Removing Unproductive Splits. Our approach inserts the minimal number
of copies required to isolate the never-killed values. Nevertheless, coloring can
make some of these copies superfluous. Recall the Minimal column in Figure 6. If
neither p0 nor p12 are spilled and both receive the same color, the copy connecting
them is unnecessary. Because it has a real run-time cost, the copy should be
eliminated whenever possible. We cannot simply use coalesce; it would remove
all of the copies, losing the desired separation between values with different tags.
Therefore, we use a pair of limited coalescing mechanisms to remove unproductive
copies: conservative coalescing and biased coloring. Conservative coalescing is a
straightforward modification of Chaitin’s coalesce phase. Conceptually, we add a
single constraint to coalesce – only combine two live ranges if the resulting single live
range will not be spilled. Biased coloring increases the likelihood that live ranges
connected by a copy get assigned to the same register. Conceptually, select tries
to assign the same color to two live ranges connected by a copy. Taken together,
these two mechanisms remove most of the unproductive copies.

3Note that the allocator could insert all the copies suggested in the Splits column as a form of

live range splitting. We are currently exploring the problem of performing live range splitting in
a Chaitin-style allocator. So far, our experimental results have been mixed [3].
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4.2 Implementing Rematerialization

Chaitin-style allocators can be extended naturally to accommodate our approach.
The high-level structure depicted in Figure 4 is unchanged, but several low-level
modifications are required. The next sections discuss the enhancements required in
renumber, coalesce, and select.

4.2.1 Renumber. Chaitin’s version of renumber was based on def-use chains [8].
Long before our interest in rematerialization, we adopted an implementation strat-
egy for renumber based on the pruned SSA graph. Conceptually, that implemen-
tation has four steps:

(1) Determine liveness at each basic block using a sparse data-flow evaluation
graph [9].

(2) Insert φ-nodes based on dominance frontiers [13]. Avoid inserting dead φ-nodes.
(3) Renumber the operands in every instruction to refer to values instead of the

original virtual registers. At the same time, accumulate availability information
for each block. The intersection of live and avail is needed at each block to
allow construction of a precise interference graph [8].

(4) Form live ranges by unioning together all the values reaching each φ-node using
a fast disjoint set union. The disjoint set structure is maintained while build-
ing the interference graph and coalescing (where coalesces are further union
operations).

In our implementation, steps 3 and 4 are performed during a single walk over the
dominator tree. Using these techniques, renumber completely avoids the use of bit-
vectored flow analysis. Despite the apparent complexity of the algorithms involved,
it is very fast in practice and requires only a modest amount of space.

Because renumber already uses the SSA graph, only modest changes are required
to support rematerialization. The modified renumber has six steps:

(1) Determine liveness at each basic block using a sparse data-flow evaluation
graph.

(2) Insert φ-nodes based on dominance frontiers, still avoiding insertion of dead
φ-nodes.

(3) Renumber the operands in each instruction to refer to values. At the same
time, initialize the rematerialization tags for all values.

(4) Propagate tags using the sparse simple constant algorithm as modified in Sec-
tion 4.1.2.

(5) Examine each copy instruction. If the source and destination values have iden-
tical inst tags, we can union them and remove the copy.

(6) Examine the operands of each φ-node. If an operand value has the same tag
as the result value, union the values; otherwise, insert a split (a distinguished
copy instruction) connecting the values in the corresponding predecessor block.

Steps 5 and 6 are performed in a single walk over the dominator tree.

4.2.2 Conservative Coalescing. To prevent coalesce from removing the splits so
carefully introduced in renumber, we must limit its power. Specifically, it should
never coalesce a split instruction if the resulting live range may be spilled. In
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normal coalescing, two live ranges li and lj are combined if lj is defined by a copy
from li and they do not otherwise interfere. In conservative coalescing, we add
an additional constraint: combine two live ranges connected by a split if and only
if lij has < k neighbors of significant degree, where significant degree means a
degree ≥ k.

To understand why this restriction is safe (indeed, it is conservative), recall
Chaitin’s coloring heuristic [6]. Before any spilling, nodes of degree < k are re-
moved from the graph. When a node is removed, the degrees of its neighbors are
reduced, perhaps allowing them to be removed. This process repeats until the
graph is empty or all remaining nodes have degree ≥ k. Therefore, for a node to
be spilled, it must have at least k neighbors with degree ≥ k in the initial graph.

In practice, we perform two rounds of coalescing. Initially, all possible copies
are coalesced (but not split instructions). The graph is rebuilt and coalescing is
repeated until no more copies can be removed. Then, we begin conservatively
coalescing split instructions. Again, we repeatedly build the interference graph and
attempt further conservative coalescing until no more splits can be removed.

In theory, we should not intermix conservative coalescing with unrestricted coa-
lescing since the result of an unrestricted coalesce may be spilled. For example, li
and lj might be conservatively coalesced, only to have a later coalesce of lij with lk
provoke the spilling of lijk (since lijk may have k or more neighbors of significant
degree). In practice, this may not prove to be a problem; we have not measured
this effect. If intermixing conservative coalescing with unrestricted coalescing does
not produce worse allocations, it would simplify and speed the entire process.

Conservative coalescing directly improves the allocation. Each coalesce removes
an instruction from the resulting code – a split instruction that was introduced by
the allocator. In regions where there is little competition for registers, conservative
coalescing undoes all splitting. However, it cannot undo all the non-productive
splits by itself.

4.2.3 Biased Coloring. The second mechanism for removing useless splits in-
volves changing the order in which colors are considered for assignment. As renum-
ber inserts splits, it marks pairs of values connected by a split as partners. When
select assigns a color to li, it first tries colors already assigned to one of li’s part-
ners. With a careful implementation, this is no more expensive than picking the
first available color; it really amounts to biasing the spectrum of colors by previous
assignments to li’s partners.

The biasing mechanism can combine live ranges that conservative coalescing can-
not. For example, li might have 2k neighbors of significant degree, but these neigh-
bors might not interfere with each other and thus might all be colored identically.
Conservative coalescing cannot combine li with any of its partners; the resulting
live range would have too many neighbors of significant degree. Biasing may be able
to combine li and its partners because it is applied after the allocator has shown
that both live ranges will receive colors. At that late point in allocation, combining
them is a matter of choosing the right colors. By virtue of its late application, the
biasing mechanism uses a detailed level of knowledge about the problem that is not
available any earlier in the process – for example, when coalescing is performed.

To increase the likelihood that biasing will match partners, we can add limited
lookahead. When picking a color for li, if it has an uncolored partner lj , the
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allocator can look for a color that is still available for lj . On average, li has a small
number of partners; thus, we can add limited lookahead to biased coloring without
increasing the asymptotic complexity of select.

5. EMPIRICAL STUDIES

We have implemented these techniques in our optimizing compiler for FORTRAN.
The compiler has experimental code generators for the RT/PC, the Sparc, and the
RS/6000. To experiment with register allocation, we have built a series of allocators
that are independent of any particular architecture [3].

All of our experiments have involved Chaitin-style allocators; we have not im-
plemented any other kind of register allocator (e.g., those described in Section 7).
There are several reasons for this. First, each allocator requires a large implemen-
tation effort. Second, the results would be suspect because we have insight into
tuning Chaitin-style allocators, but no practical experience with other allocators.
Finally, the results would present a clouded picture. Since good experiments require
controlled changes, we try to change only one thing at a time.

Our experimental allocators work with routines expressed in ILOC, a low-level
intermediate language designed to allow extensive optimization. An ILOC routine
that assumes an infinite register set is rewritten in terms of a particular target
register set, with spill code added as necessary. The target register set is specified
in a small table and may be varied to allow convenient experimentation with a wide
variety of register sets.

After allocation, each ILOC routine is translated into a complete C routine. Each
C routine is compiled and the resulting object files are linked into a complete
program. There are several advantages to this approach:

—By inserting appropriate instrumentation during the translation to C, we can
collect accurate, dynamic measurements.

—Compilation to C allows us to test a single routine in the context of a complete
program running with real data.

—We can perform our tests in a machine-independent fashion, potentially using a
variety of register sets.

Simply timing actual machine code is inherently machine-dependent and tends
to obscure the effects of allocation. During the translation into C, we can add
instrumentation to count the number of times any specific ILOC instruction is
executed. For comparing register allocators, we are interested in the number of
loads, stores, copies, load-immediates, and add-immediates.

Figure 7 shows a small sample of ILOC code and the corresponding C transla-
tion. Usually there is a one-to-one mapping between the ILOC statements and the
C translations, though some additional C is required for the function header and
declarations of the “register” variables; e.g., r14 and f15. Also note the simple
instrumentation appearing immediately after several of the statements. Of course,
this sample is very simple, but the majority of ILOC is no more complex.

5.1 The Target Machine

For the tests reported here, our target machine is defined to have sixteen integer
registers and sixteen floating-point registers. Each floating-point register can hold
a double-precision value, so no distinction is made between single-precision and
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LLE3: nop

LLA4: ldi r14 8

add r9 r15 r11

mvf f15 f0

bc L023

L023: lddrr f14 r14 r9

dabs f14 f14

dadd f15 f15 f14

addi r14 r14 8

sub r7 r10 r14

br ge r7 N6 N7

LLE3:

LLA4: r14 = (int) (8); i++;

r9 = r15 + r11;

f15 = f0; c++;

goto L023;

L023: f14 = *((double *) (r14 + r9)); l++;

f14 = fabs(f14);

f15 = f15 + f14;

r14 = r14 + (8); a++;

r7 = r10 - r14;

if (r7 >= 0) goto N6; else goto N7;

Fig. 7. ILOC and C

double-precision values once they are held in registers. Up to four integer registers
may be used to pass arguments (recall that arguments are passed by reference in
FORTRAN; therefore, the argument registers hold pointers to the actual values); any
remaining arguments are passed in the stack frame. Function results are returned
in an integer or floating-point register, as appropriate. Ten of each register class
are designated as callee-saves; the remaining six (including the argument registers)
are not preserved by the callee.

When reporting costs, we assume that each load and store requires two cycles;
all other instructions are assumed to require one cycle. Of course, these are only
simple approximations of the costs on any real machine.

5.2 Measuring Spill Costs

Since our instrumentation reports dynamic counts of all loads, stores, etc., we need
a mechanism for isolating the instructions due to allocation. A difficulty is that
some spills are profitable. In other cases, the allocator removes instructions; e.g.,
copy instructions. Therefore, we tested each routine on a hypothetical “huge”
machine with 128 registers, assuming this would give a nearly perfect allocation.
The difference between the “huge” results and the results for one of the allocators
targeted to our “standard” machine should equal the number of cycles added by
the allocator to cope with insufficient registers.

5.3 Experimental Results

Our test suite is a collection of seventy routines contained in eleven programs.
Eleven routines are from Forsythe, Malcolm, and Moler’s book on numerical meth-
ods [18]. They are grouped into seven programs with simple drivers. The remaining
fifty-nine routines are from the SPEC benchmark suite [32]. Four of the SPEC pro-
grams were used: doduc (41 routines), fpppp (12 routines), matrix300 (5 routines),
and tomcatv (1 routine). The two other FORTRAN programs in the suite (spice
and nasa7) require language extensions not yet supplied by our front-end.

Our results are presented as a sequence of comparisons in two tables. The first
two columns give the program and subroutine name. The third and fourth column
give the observed spill costs for the two allocators being compared. These costs are
calculated from dynamic counts of instructions as described earlier. The last column
(total) gives the percentage improvement in spill costs from the old allocator to the
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Table I. Effects of Optimistic Coloring

Cycles of Spill Code Percentage Contribution
program routine Original Optimistic load store copy ldi addi total

fmin fmin 551 370 16 16 0 32
seval spline 125 117 5 2 6
solve decomp 362 305 10 6 0 16

svd svd 2,509 1,977 16 7 −2 21
doduc colbur 25 19 8 8 8 24

dcoera 29 15 21 21 7 48
ddeflu 443 335 13 12 −0 24
debflu 1,939 1,131 20 20 42
debico 463 459 0 0 1
deseco 5,500 4,957 4 2 −1 3 0 10
drepvi 252 218 7 6 14
ihbtr 452 400 6 6 12
inithx 714 579 11 4 4 19
integr 526 502 5 5
lectur 257 221 11 2 2 14
paroi 1,780 1,433 9 6 5 20
prophy 1,954 1,531 13 9 0 21
repvid 651 599 4 4 8
supp 146 149 −1 −1 0 −2

fpppp d2esp 51 35 16 16 −2 2 31
efill 173 94 21 23 2 46
fpppp 1,472 1,444 1 1 2
twldrv 13,731,802 11,311,624 12 7 0 18

matrix300 lbmk14 136 132 1 1 3
sgemm 12,321 9,905 10 10 20
sgemv 3,027 1,808 40 0 −0 40

tomcatv tomcatv 394,397,732 367,995,733 3 3 −0 7

new one – large positive numbers indicate significant improvements. The middle
columns show the contribution of each instruction type to the total.

All percentages have been rounded to the nearest integer. Insignificant improve-
ments are reported as 0 and insignificant losses are reported as −0. In cases where
the result is zero, we simply show a blank. Since results are rounded, a total entry
may not equal the sum of the contributing entries. Each table shows only routines
where a difference was observed.4

Consider the first row in Table I. This row presents results for the routine
fmin from the program fmin. The allocator using Chaitin’s heuristic generated
an allocation requiring 551 cycles of spill code; the optimistic allocator required
only 370 cycles. 16% of the savings came from having to execute fewer loads and
16% arose from fewer stores. There was a further insignificant improvement due to
executing fewer load-immediates. The total improvement was 32%.

5.3.1 Optimistic Coloring. Table I shows a comparison of test results for our
allocator using two different coloring heuristics. The column labeled Original gives
data for a version using Chaitin’s coloring heuristic; the column labeled Optimistic
gives data for a version using our optimistic coloring heuristic.

In our test suite of 70 routines, we measured improvements in 26 cases and a
single loss (an extra load and store were required). Improvements ranged from
tiny to quite large, sometimes reducing spill costs by over 40%. The single loss was

4The raw data for the tables is given in Appendix A of Briggs’ thesis [3].
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Table II. Effects of Rematerialization

Cycles of Spill Code Percentage Contribution
program routine Optimistic Remat. load store copy ldi addi total

rkf45 fehl 68 50 26 7 −7 27
seval spline 117 102 10 2 2 −1 13
solve decomp 305 286 4 3 −1 6

svd svd 1,977 1,966 1 0 −0 1
zeroin zeroin 236 234 2 −1 1
doduc bilan 1,046 966 5 3 8

bilsla 16 15 6 6
colbur 19 24 −11 −11 −5 −26
ddeflu 335 375 −5 −7 1 1 −12
debico 459 418 6 0 1 2 9
deseco 4,957 4,636 7 2 −2 0 7
drepvi 218 175 4 14 0 2 20
drigl 32 31 3 3
heat 34 31 6 1 9
ihbtr 400 395 1 0 −0 1
inideb 50 48 4 4
inisla 31 28 6 3 10
inithx 579 437 17 10 −2 25
integr 502 372 18 12 −3 26
lectur 221 166 2 23 25
orgpar 39 35 5 −3 8 10
paroi 1,433 1,383 8 0 −1 −4 4
pastem 289 220 20 10 13 −19 24
prophy 1,531 1,525 0 0 0
repvid 599 404 9 13 11 33

fpppp d2esp 35 34 6 −3 3
main 210 199 0 5 5
twldrv 11,311,624 11,198,058 2 0 −1 1

matrix300 sgemm 9,905 8,398 12 6 −3 15
tomcatv tomcatv 367,995,733 355,039,258 4 0 −0 4

disappointing, since we have claimed that the optimistic coloring heuristic can never
spill more than Chaitin’s heuristic. However, we must recall the structure of the
allocator. After each attempt to color, spill code is inserted and the entire build-
coalesce-color process is repeated. The optimistic coloring heuristic will perform
at least as well as Chaitin’s heuristic on any graph; but after spilling, the two
allocators will be facing different problems.

5.3.2 Rematerialization. Table II summarizes the effect of our new approach to
rematerialization. It compares two versions of the optimistic allocator that differ
only in their handling of never-killed values. The column labeled Optimistic gives
data for a version that uses Chaitin’s limited approach to rematerialization; the
column labeled Remat. gives data for a version incorporating our new method.

From the entire suite of 70 routines, we observed improvements in 28 cases and
degradations in only 2 cases. One loss was very small (2 loads, 2 stores, and an
extra copy); the other was somewhat larger. Improvements ranged from tiny to
reasonably large, with many greater than 20%. Of course, adjusting the relative
costs of each instruction, especially loads and stores, will change the amount of
improvement.

As expected, we see a pattern of fewer load instructions and more load-immediate
instructions. Typically, the number of stores and the number of copies are also
reduced. The reduced number of copy instructions suggests that our heuristics
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for removing unhelpful splits are adequate in practice. Note that this reduction is
obtained in spite of the extra copies introduced by renumber.

5.4 Allocation Costs

The improved allocations come at a cost in compile-time. In the case of the op-
timistic allocator, the coloring phase can be more expensive due to the need to
attempt a coloring even if spill candidates are discovered. Support for remateri-
alization requires several extra steps. An extra pass over the code is required to
initialize rematerialization tags before propagation and further time is required to
propagate the tags throughout the routine. Finally, at least one extra pass is re-
quired to accomplish conservative coalescing. On the other hand, the build-coalesce
process may be slightly faster since we can eliminate some copies during renumber
(recall step 5 in Section 4.2.1).

Table III shows comparative timings for the three allocators on three routines
from the SPEC suite. Times are given in seconds and were measured with a
100 hertz clock on an unloaded IBM RS/6000 Model 540. Each run was repeated
10 times and the results were averaged. The first column shows the phase of alloca-
tion. Cfa stands for control-flow analysis and includes the time required to compute
forward and reverse dominators and dominance frontiers. Build includes the entire
build-coalesce loop. Color includes both simplify and select. Note that tomcatv
required more rounds of spilling than the other routines. For each routine, the
Orig. column gives times required by the allocator with Chaitin’s original coloring
heuristic, the Opt. column gives the times required by the optimistic allocator, and
the Remat. column gives times required by the optimistic allocator with improved
rematerialization.

We selected three routines to illustrate performance over a range of sizes. The
first routine is repvid, from the program doduc, with 144 non-comment lines of
FORTRAN. It compiles to a .text size of 1284 bytes using IBM’s xlf compiler
with full optimization. The second routine is tomcatv, with 133 lines and a .text
size of 3064 bytes. The largest routine is twldrv from the program fpppp, with
881 lines and a .text size of 15,616 bytes. All three routines appear in Table I.

An obvious conclusion to draw from the data in Table III is that support for
rematerialization can require a small amount of additional compile-time. On the
other hand, the optimistic coloring heuristic has very little cost and is sometimes
faster than Chaitin’s pessimistic heuristic.

The results in Table III also illuminate a number of interesting details about the
behavior of all three allocators.

—The initial pass of the build-coalesce loop dominates the overall cost of allocation
(as noted by Chaitin). In comparison, additional iterations of the color-spill
process are quite inexpensive.

—In each case, the cost of renumber is higher for Remat., reflecting the cost of
propagating rematerialization tags.

—In most cases, the cost of the build-coalesce loop is higher for Remat. due to the
additional passes of conservative coalescing.

—The very low cost of control-flow analysis illustrates the speed and practicality
of the algorithm for calculating dominance frontiers [13].
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Table III. Allocation Times in Seconds

repvid tomcatv twldrv

Phase Orig. Opt. Remat. Orig. Opt. Remat. Orig. Opt. Remat.

cfa .00 .00 .00 .00 .00 .01 .01 .01 .01

renum .04 .03 .04 .06 .06 .07 .56 .56 .62
build .16 .16 .16 .38 .38 .42 9.88 9.84 8.47

costs .01 .01 .01 .02 .02 .02 .14 .16 .14
color .01 .02 .03 .03 .04 .06 1.12 1.08 1.61

spill .01 .01 .01 .02 .02 .02 .18 .16 .16

renum .02 .02 .02 .02 .02 .03 .08 .10 .14

build .06 .06 .06 .09 .09 .12 .62 .61 .81
costs .01 .01 .01 .01 .01 .01 .07 .07 .06

color .01 .01 .02 .01 .02 .04 .11 .14 .31
spill .01 .00 .01 .09 .01 .01 .04 .03 .04

renum .02 .01 .02 .02 .02 .03 .09 .10 .14

build .04 .04 .06 .05 .05 .09 .40 .59 .80
costs .01 .01 .01 .01 .01 .01 .07 .07 .06

color .01 .01 .02 .02 .02 .04 .19 .15 .31
spill .01 .00 .01

renum .02 .02 .03
build .06 .05 .09

costs .01 .01 .01
color .01 .02 .04

spill .01

renum .02
build .05

costs .01
color .02

total .40 .39 .47 .97 .85 1.13 13.55 13.65 13.67

—The higher cost of coloring in the first pass arises from the cost of choosing nodes
to spill. While the cost of coloring is linear in the size of the graph, spill selection
is O(s · n), where s is the number of spill choices and n is the number of nodes.
With a large number of spills, this term dominates the cost of coloring.

We are pleased with the overall speed of the allocators. Our results appear to be
slightly faster than the times reported by IBM’s xlf compiler for register allocation
and comparable to the times reported for optimization. In an extensive comparison
with priority-based coloring, our allocators appeared much slower on very small
routines, but much faster on very large routines [3]. Of course, these speeds are not
competitive with the fast, local techniques used in non-optimizing compilers [19, 20];
however, we believe that global optimizations require global register allocation.

6. IMPLEMENTATION INSIGHT

To perform the experiments described in Section 5, we implemented several versions
of our allocator. Naturally, we gained some insight into the implementation of
Chaitin-style graph coloring allocators. This section attempts to convey those ideas
in a concise form. We hope that it proves useful to other implementors. When
possible, we label an insight with the particular phase of the allocator that it
affects.
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Constant values. The rematerialization scheme suggests that the compiler should
represent constants in a way that makes them visible to the allocator. In our
current compiler, integer constants are obvious in the code; they are loaded
using an integer load immediate instruction. Non-integer constants are stored
in a static constant pool and loaded using a fixed offset from the static data
area pointer. This effectively hides them from rematerialization. Changing our
intermediate representation to make these values visible would expose them to
rematerialization, improving the quality of the final code.

Build. Like Chaitin, we advocate building two representations of the interference
graph: both a bit matrix and a set of adjacency vectors. Many implementations
use a single representation and claim a space savings. However, both forms of
the graph are needed for efficient execution of the allocator.
In practice, we have not had problems with an explosion in the size of the
interference graph. Our allocator runs in a reasonable amount of space. For
example, the interference graph of tomcatv requires 146,404 bytes while the
graph for twldrv requires 3,357,640 bytes [3]. Usually, the bit vectors for an
iterative solution of the live variables problem are as large as our interference
graphs. This fact led us to use the sparse evaluation graph techniques of Choi,
Cytron, and Ferrante [9].

Coalescing. Coalescing is not transitive. Even though li and lj do not interfere and
li and lk do not interfere, lij will interfere with lk if lj interferes with lk. Thus,
the order of coalescing is important.
Coalescing should proceed from innermost loops outward. Inside-out coalescing
ensures that copies in more deeply nested loops get removed before copies in
outer loops. In practice, this makes a noticeable difference on many routines.

Conservative coalescing and biased coloring. There is a direct trade-off between the
strength of conservative coalescing and the effectiveness of biased coloring. In
practice, we experimented with several different restrictions on coalescing. More
precise (i.e., less conservative) restrictions on coalescing increase the set of live
ranges that it can combine; this decreases the number of live ranges combined
by biased coloring. It is unclear whether this occurs because the more precise
coalescing condition restricts freedom in the graph or because it combines live
ranges that biased coloring also will catch. In any case, biased coloring cannot
completely eliminate the need for conservative coalescing.

Computing spill costs. In our allocator, spill costs is always executed. Chaitin’s
allocator waits until it must choose the first value to spill [7]. Each approach
has its merits.
Some live ranges have negative spill costs. This suggests that it is less expensive
to store and reload them than to keep them in registers. Our allocator computes
spill costs early and aggressively removes live ranges with negative spill cost.
Chaitin defers the computation of spill costs until the allocator recognizes that
it must spill. This speeds allocation on procedures that color without spilling.
Additionally, the allocator can skip the spill-cost computation for live ranges
that it has already removed from the graph.

Simplify. Rematerialization fundamentally changes the allocator. Live ranges are
unrelated in other Chaitin-style allocators. The order of removal for trivially
colored nodes has little noticeable effect on the results of allocation. The in-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994, pp. 428–455.



22 · P. Briggs, K. D. Cooper, and L. Torczon

troduction of splits to isolate never-killed values and the use of biased coloring
change that fact. This gives a new importance to the relative removal order of
trivially colored nodes. When faced with multiple nodes that can be removed,
select should first remove nodes that have no partners. This forces the nodes
with partners to be colored first. They are colored in a less constrained graph.
In practice, this increases the effectiveness of biased coloring.

Picking spill candidates. Introducing splits in order to support rematerialization
increases the number of nodes in the interference graph. This can adversely
effect the running time of simplify by increasing the time spent searching for
spill candidates. As described in Section 2, the search for a spill candidate must
examine each node remaining in the current graph. A naive implementation
repeats this process for each spill because the spill metric includes the node’s
current degree. Thus, choosing spill candidates takes O(k ·N) time, where k is
the number of spills and N is the number of live ranges in the original graph.
Undoubtedly, some careful algorithmic work can improve this situation. In
practice, we refactored the comparison by noting that

cost(li)
l◦i

≥ cost(lj)
l◦j

if and only if cost(li)× l◦j ≥ cost(lj)× l◦i .

Replacing the floating-point divisions with integer multiplies improved the con-
stant factor.

Limited backtracking. Select assigns colors to nodes in a somewhat arbitrary man-
ner. Biased coloring capitalizes on this fact by carefully choosing the order
in some cases where it matters. Nonetheless, improved color choice can avoid
some spills. In the optimistic allocator, we can add a limited form of backtrack-
ing. When no color is available for node p, select can consider recoloring one
of p’s neighbors to open up a color for p. Such backtracking must be carefully
constrained to avoid a combinatorial explosion.
While examining p’s neighbors to determine available colors, we can accumulate
the number of uses of each color and note which neighbor uses each color. If no
color remains for p and one of the colors is used by only one of p’s neighbors,
select can try to recolor that neighbor. If it succeeds, a color is available for p.
Limited backtracking is easy to implement. It takes very little compile time.
It rarely leads to degradation.5 On the other hand, it rarely leads to a sig-
nificant improvement [3]. It also fits into biased coloring; however, experience
suggests that limited lookahead (see Section 4.2.3) produces more consistent
improvement than limited backtracking in the biased scheme.

NP-noise. In testing, we have often stumbled on a phenomenon that we label NP-
noise. When measuring the output of a process that involves heuristic solution
of an NP-complete problem, the answers often contain behavior that seems
anomalous. Sometimes the heuristic must pick from a set of choices that have
the same local cost. Different choices can lead to different answers.
In the allocator, we use a linear-time heuristic to find the coloring. From a
decision tree perspective, it picks a path through a tree in time proportional to

5We have never seen it produce a worse allocation, though such situations are conceivable. It is

often better to save an expensive spill now instead of possibly saving less-expensive spills in the
future.
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the height of the tree. Of course, the tree has an exponential number of nodes.
At each step, it picks based on local information – the history of previous choices
and the remaining nodes. Changing a local choice can lead to a different global
result. Thus, simple things like the ordering of nodes, how ties are broken, and
actual color assignments produce variations in the output.
These variations make it difficult to compare two competing allocators. For
example, in Table II, our rematerialization scheme produced worse code than
the optimistic allocator with Chaitin’s scheme for two of the routines, colbur
and ddeflu in doduc. A heuristic that, in general, has better global behavior,
can produce anomalous results in specific cases.
This effect may, in part, account for the effects seen by the Haifa group with
their “best of three” spilling scheme [2]. They smooth out some of the NP-noise
by using three different spill metrics and taking the best result.

7. OTHER WORK

The relationship between economical use of memory and graph coloring has been
discussed for a long time. The first paper on this subject appears to be Lavrov’s
1961 paper on minimizing memory use [28]. He suggests building an inconsistency
graph and coloring it; he does not propose a practical method for finding a coloring.
Ershov and his colleagues built on this work in the ALPHA project. They solved
storage allocation problems by building an interference graph and using a packing
algorithm on it [14, 15]. By the late sixties, Cocke was clearly talking about applying
these insights directly to register allocation; both Kennedy and Schwartz credit him
with this insight [26, 31].

This early work on graph coloring register allocation emphasizes the coloring
problem with little consideration for the questions of spill choice and placement.
Algorithms by Cocke and Ershov (as reported by Schwartz [31]) are concerned
exclusively with minimizing the number of colors required. There is no discussion
of spill code and the flow graph is ignored entirely.

The first complete register allocator based upon graph coloring is described by
Chaitin and his colleagues [8]. Spilling is handled by a variety of heuristics, some
based upon an interval analysis of the flow graph. Unfortunately, these ad hoc
techniques are expensive and not always effective. In a subsequent paper, Chaitin
introduces a simpler technique that attempts to solve the spilling problem based
on the interference graph and spill-cost estimates for each live range [6]. Section 2
describes this allocator.

Chow and Hennessy describe a priority-based coloring scheme [10, 11]. In their
work, values initially reside in memory. They divide the register set between lo-
cal and global allocation. They build an imprecise interference graph and color
constrained live ranges in priority order. Their priority function uses spill cost
normalized by live range length. When a constrained live range cannot be colored,
they split it into smaller pieces and try to color them independently.

Fabri, in the context of her work on minimizing memory storage requirements,
introduces a renaming transformation that is analogous to Chow’s live range split-
ting [16]. She notes that, in some cases, splitting improved the resulting coloring.
She mentions the idea’s applicability to register allocation problems.

Several groups have refined Chow’s approach. Larus and Hilfinger make several
modifications [27]. In their work, values initially reside in registers. They elim-
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inate local allocation, limit basic block sizes, and use a more sophisticated live
range splitting technique. Gupta, Soffa, and Steele describe an approach that par-
titions the interference graph into subgraphs that are colored individually and later
merged [23].

Johnson and Miller describe another priority-based allocator [25]. They assign
colors in order of decreasing degree in the interference graph. When they must spill,
they examine both the current live range and all those that have been assigned
colors and spill the value with minimal cost under their spill metric. Their metric
combines Chaitin’s notion of spill cost with a term that includes the impact of
keeping a value in a register across loops where it is live but not used. While we
have not implemented a version of their algorithm, we believe that their scheme
will avoid problems like the one we observed with the SVD routine. On the other
hand, it will spill some live ranges that Chaitin proves are trivially colored.

Bernstein and his colleagues describe a collection of techniques [2]. They show
that a best-of-three coloring scheme produces better results than Chaitin’s original
scheme. They impose a “largest degree first” ordering when removing unconstrained
nodes from the graph in simplify (Step (5a) in Section 2). They introduce a cleaning
heuristic to decrease the amount of spill code generated within a single basic block.
In our experience, these improvements are orthogonal to those presented in this
paper.

Callahan and Koblenz construct a fine-grained hierarchical decomposition of the
flow graph, a tiling [5]. Coloring is performed for individual tiles and the results
are merged in two passes over the tree. Their algorithm is explicitly parallel.

Of course, not all global allocators are built on the graph coloring paradigm.
Other approaches include the bin-packing allocators built by Digital Equipment
Corporation and the probabilistic allocator of Fischer and Proebsting [1, 17]. It is
difficult to compare these techniques because the implementations work on different
intermediate representations, they follow different optimizers, and the compilers
target different machines.

8. SUMMARY

Optimistic coloring is a simple improvement over Chaitin’s original allocator. It
produces the same allocation as Chaitin’s method, except when it improves on
the result. The results in Table I show that this happens regularly. The costs
are nearly identical; occasionally one method will require an extra trip around the
main loop for spill code insertion. In another paper, we have shown that optimistic
allocators generate better allocations on machines that use register pairs for some
values [4]. Any implementation of a Chaitin-style allocator should incorporate this
improvement; it makes a significant difference in the allocation quality at little or
no cost.

Our method of rematerializing never-killed values finds the maximum extents for
each never-killed value. It ensures that the allocator will spill these values in the
least expensive way. In procedures where never-killed values must be spilled, the
result is better code. The results in Table II show that this actually happens. When
no opportunities for rematerialization exist, the features added for rematerialization
do not hurt. Additionally, the algorithms that we describe in Section 4 are both
fast and practical.
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